Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks

Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-07, Vol.25 (28), p.1913-1923
Hauptverfasser: Treger, Marvin, König, Carolin, Behrens, Peter, Schneider, Andreas M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1923
container_issue 28
container_start_page 1913
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Treger, Marvin
König, Carolin
Behrens, Peter
Schneider, Andreas M
description Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%. Metal-organic frameworks (MOFs) possess a modular construction. By applying a fragmentation scheme the refractive index n of MOFs can be calculated in an efficient way.
doi_str_mv 10.1039/d3cp02356g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37417354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835277740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-df1476d45a9d90a8f7fc32a99b5550e1af3d5802791a56cdc403a236ddbe23c83</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi0EArrlwh0UqZeqUqjtieP4WG3Lh4RUDu05mvXHYkjixU4K_Hu8LCxSTzOa95nRzLyEHDN6xiio7wb0inIQ9XKHHLKqhlLRptrd5rI-IJ9SuqOUMsFgnxyArJgEUR0Sfx5x2dthLBeYrClwtYoB9W3hQizGW1tY57z2GSg0dnrqcPRhKIJ7FaN1EfXo_9nCD8Y-reu9HbErQ1zi4HWR9d4-hnifPpM9h12yR29xRv6e__ozvyyvf19czX9clxqAj6VxrJK1qQQqoyg2TjoNHJVaCCGoZejAiIZyqRiKWhtdUUAOtTELy0E3MCNfN3PzIQ-TTWPb-6Rt1-Fgw5Ra3oDgUsrcNyNf_kPvwhSHvN2aUlxRzkWmvm0oHUNK-eR2FX2P8blltF0b0P6E-c2rARcZPn0bOS16a7bo-8czcLIBYtJb9cNBeAF1UYrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839290225</pqid></control><display><type>article</type><title>Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Treger, Marvin ; König, Carolin ; Behrens, Peter ; Schneider, Andreas M</creator><creatorcontrib>Treger, Marvin ; König, Carolin ; Behrens, Peter ; Schneider, Andreas M</creatorcontrib><description>Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%. Metal-organic frameworks (MOFs) possess a modular construction. By applying a fragmentation scheme the refractive index n of MOFs can be calculated in an efficient way.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp02356g</identifier><identifier>PMID: 37417354</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Boundary conditions ; Density functional theory ; Mathematical analysis ; Metal-organic frameworks ; Optical properties ; Organic materials ; Refractivity ; Zirconium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (28), p.1913-1923</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-df1476d45a9d90a8f7fc32a99b5550e1af3d5802791a56cdc403a236ddbe23c83</cites><orcidid>0000-0002-6516-4562 ; 0000-0001-8931-4337 ; 0000-0003-3654-7131 ; 0000-0001-8811-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37417354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Treger, Marvin</creatorcontrib><creatorcontrib>König, Carolin</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Schneider, Andreas M</creatorcontrib><title>Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%. Metal-organic frameworks (MOFs) possess a modular construction. By applying a fragmentation scheme the refractive index n of MOFs can be calculated in an efficient way.</description><subject>Boundary conditions</subject><subject>Density functional theory</subject><subject>Mathematical analysis</subject><subject>Metal-organic frameworks</subject><subject>Optical properties</subject><subject>Organic materials</subject><subject>Refractivity</subject><subject>Zirconium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1P3DAQhi0EArrlwh0UqZeqUqjtieP4WG3Lh4RUDu05mvXHYkjixU4K_Hu8LCxSTzOa95nRzLyEHDN6xiio7wb0inIQ9XKHHLKqhlLRptrd5rI-IJ9SuqOUMsFgnxyArJgEUR0Sfx5x2dthLBeYrClwtYoB9W3hQizGW1tY57z2GSg0dnrqcPRhKIJ7FaN1EfXo_9nCD8Y-reu9HbErQ1zi4HWR9d4-hnifPpM9h12yR29xRv6e__ozvyyvf19czX9clxqAj6VxrJK1qQQqoyg2TjoNHJVaCCGoZejAiIZyqRiKWhtdUUAOtTELy0E3MCNfN3PzIQ-TTWPb-6Rt1-Fgw5Ra3oDgUsrcNyNf_kPvwhSHvN2aUlxRzkWmvm0oHUNK-eR2FX2P8blltF0b0P6E-c2rARcZPn0bOS16a7bo-8czcLIBYtJb9cNBeAF1UYrc</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Treger, Marvin</creator><creator>König, Carolin</creator><creator>Behrens, Peter</creator><creator>Schneider, Andreas M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6516-4562</orcidid><orcidid>https://orcid.org/0000-0001-8931-4337</orcidid><orcidid>https://orcid.org/0000-0003-3654-7131</orcidid><orcidid>https://orcid.org/0000-0001-8811-8019</orcidid></search><sort><creationdate>20230719</creationdate><title>Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks</title><author>Treger, Marvin ; König, Carolin ; Behrens, Peter ; Schneider, Andreas M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-df1476d45a9d90a8f7fc32a99b5550e1af3d5802791a56cdc403a236ddbe23c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Density functional theory</topic><topic>Mathematical analysis</topic><topic>Metal-organic frameworks</topic><topic>Optical properties</topic><topic>Organic materials</topic><topic>Refractivity</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treger, Marvin</creatorcontrib><creatorcontrib>König, Carolin</creatorcontrib><creatorcontrib>Behrens, Peter</creatorcontrib><creatorcontrib>Schneider, Andreas M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treger, Marvin</au><au>König, Carolin</au><au>Behrens, Peter</au><au>Schneider, Andreas M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-07-19</date><risdate>2023</risdate><volume>25</volume><issue>28</issue><spage>1913</spage><epage>1923</epage><pages>1913-1923</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%. Metal-organic frameworks (MOFs) possess a modular construction. By applying a fragmentation scheme the refractive index n of MOFs can be calculated in an efficient way.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37417354</pmid><doi>10.1039/d3cp02356g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6516-4562</orcidid><orcidid>https://orcid.org/0000-0001-8931-4337</orcidid><orcidid>https://orcid.org/0000-0003-3654-7131</orcidid><orcidid>https://orcid.org/0000-0001-8811-8019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (28), p.1913-1923
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_37417354
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Boundary conditions
Density functional theory
Mathematical analysis
Metal-organic frameworks
Optical properties
Organic materials
Refractivity
Zirconium
title Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragment-based%20approach%20for%20the%20efficient%20calculation%20of%20the%20refractive%20index%20of%20metal-organic%20frameworks&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Treger,%20Marvin&rft.date=2023-07-19&rft.volume=25&rft.issue=28&rft.spage=1913&rft.epage=1923&rft.pages=1913-1923&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp02356g&rft_dat=%3Cproquest_pubme%3E2835277740%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839290225&rft_id=info:pmid/37417354&rfr_iscdi=true