Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model

This study aims to propose an indoor air quality prediction method that can be easily utilized and reflects temporal characteristics using indoor and outdoor input data measured near the indoor target point as input to calculate indoor PM concentration through a multiple linear regression model. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxics (Basel) 2023-06, Vol.11 (6)
Hauptverfasser: Park, Shin-Young, Yoon, Dan-Ki, Park, Si-Hyun, Jeon, Jung-In, Lee, Jung-Mi, Yang, Won-Ho, Cho, Yong-Sung, Kwon, Jaymin, Lee, Cheol-Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Toxics (Basel)
container_volume 11
creator Park, Shin-Young
Yoon, Dan-Ki
Park, Si-Hyun
Jeon, Jung-In
Lee, Jung-Mi
Yang, Won-Ho
Cho, Yong-Sung
Kwon, Jaymin
Lee, Cheol-Min
description This study aims to propose an indoor air quality prediction method that can be easily utilized and reflects temporal characteristics using indoor and outdoor input data measured near the indoor target point as input to calculate indoor PM concentration through a multiple linear regression model. The atmospheric conditions and air pollution detected in one-minute intervals using sensor-based monitoring equipment (Dust Mon, Sentry Co Ltd., Seoul, Korea) inside and outside houses from May 2019 to April 2021 were used to develop the prediction model. By dividing the multiple linear regression model into one-hour increments, we attempted to overcome the limitation of not representing the multiple linear regression model's characteristics over time and limited input variables. The multiple linear regression (MLR) model classified by time unit showed an improvement in explanatory power by up to 9% compared to the existing model, and some hourly models had an explanatory power of 0.30. These results indicated that the model needs to be subdivided by time period to more accurately predict indoor PM concentrations.
doi_str_mv 10.3390/toxics11060526
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_37368626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37368626</sourcerecordid><originalsourceid>FETCH-pubmed_primary_373686263</originalsourceid><addsrcrecordid>eNqFT81OwzAMjpAQm2BXjsgv0JE2NGxXtiGQqDTBOE-hcYdRGldJNrEH4_1oEZzx5ZP9_clCXOZyqtRcXif-pDrmudSyLPSJGBdKlplW8mYkJjF-yH7muZppfSZG6lbpmS70WHytA3ccjQNuwECF6Z0tO94doeEA64CW6kTsB_7RWx6OFRTTEhbsa_QpmB_6NZLfwQv6yCG7MxEtPGMk2yuoT1_5AwX2bb9GqNhT4jAYliYZMN7ChlrMlnToHRaqvUvUOYQn8mhCn7QLGOPQU7FFdyFOG-MiTn7xXFzdrzaLh6zbv7Vot12g1oTj9u9P9a_gG-IdZ2g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Park, Shin-Young ; Yoon, Dan-Ki ; Park, Si-Hyun ; Jeon, Jung-In ; Lee, Jung-Mi ; Yang, Won-Ho ; Cho, Yong-Sung ; Kwon, Jaymin ; Lee, Cheol-Min</creator><creatorcontrib>Park, Shin-Young ; Yoon, Dan-Ki ; Park, Si-Hyun ; Jeon, Jung-In ; Lee, Jung-Mi ; Yang, Won-Ho ; Cho, Yong-Sung ; Kwon, Jaymin ; Lee, Cheol-Min</creatorcontrib><description>This study aims to propose an indoor air quality prediction method that can be easily utilized and reflects temporal characteristics using indoor and outdoor input data measured near the indoor target point as input to calculate indoor PM concentration through a multiple linear regression model. The atmospheric conditions and air pollution detected in one-minute intervals using sensor-based monitoring equipment (Dust Mon, Sentry Co Ltd., Seoul, Korea) inside and outside houses from May 2019 to April 2021 were used to develop the prediction model. By dividing the multiple linear regression model into one-hour increments, we attempted to overcome the limitation of not representing the multiple linear regression model's characteristics over time and limited input variables. The multiple linear regression (MLR) model classified by time unit showed an improvement in explanatory power by up to 9% compared to the existing model, and some hourly models had an explanatory power of 0.30. These results indicated that the model needs to be subdivided by time period to more accurately predict indoor PM concentrations.</description><identifier>EISSN: 2305-6304</identifier><identifier>DOI: 10.3390/toxics11060526</identifier><identifier>PMID: 37368626</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Toxics (Basel), 2023-06, Vol.11 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2776-5989 ; 0000-0002-5506-8120 ; 0000-0002-0977-6898 ; 0000-0003-2276-2463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37368626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Shin-Young</creatorcontrib><creatorcontrib>Yoon, Dan-Ki</creatorcontrib><creatorcontrib>Park, Si-Hyun</creatorcontrib><creatorcontrib>Jeon, Jung-In</creatorcontrib><creatorcontrib>Lee, Jung-Mi</creatorcontrib><creatorcontrib>Yang, Won-Ho</creatorcontrib><creatorcontrib>Cho, Yong-Sung</creatorcontrib><creatorcontrib>Kwon, Jaymin</creatorcontrib><creatorcontrib>Lee, Cheol-Min</creatorcontrib><title>Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model</title><title>Toxics (Basel)</title><addtitle>Toxics</addtitle><description>This study aims to propose an indoor air quality prediction method that can be easily utilized and reflects temporal characteristics using indoor and outdoor input data measured near the indoor target point as input to calculate indoor PM concentration through a multiple linear regression model. The atmospheric conditions and air pollution detected in one-minute intervals using sensor-based monitoring equipment (Dust Mon, Sentry Co Ltd., Seoul, Korea) inside and outside houses from May 2019 to April 2021 were used to develop the prediction model. By dividing the multiple linear regression model into one-hour increments, we attempted to overcome the limitation of not representing the multiple linear regression model's characteristics over time and limited input variables. The multiple linear regression (MLR) model classified by time unit showed an improvement in explanatory power by up to 9% compared to the existing model, and some hourly models had an explanatory power of 0.30. These results indicated that the model needs to be subdivided by time period to more accurately predict indoor PM concentrations.</description><issn>2305-6304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFT81OwzAMjpAQm2BXjsgv0JE2NGxXtiGQqDTBOE-hcYdRGldJNrEH4_1oEZzx5ZP9_clCXOZyqtRcXif-pDrmudSyLPSJGBdKlplW8mYkJjF-yH7muZppfSZG6lbpmS70WHytA3ccjQNuwECF6Z0tO94doeEA64CW6kTsB_7RWx6OFRTTEhbsa_QpmB_6NZLfwQv6yCG7MxEtPGMk2yuoT1_5AwX2bb9GqNhT4jAYliYZMN7ChlrMlnToHRaqvUvUOYQn8mhCn7QLGOPQU7FFdyFOG-MiTn7xXFzdrzaLh6zbv7Vot12g1oTj9u9P9a_gG-IdZ2g</recordid><startdate>20230612</startdate><enddate>20230612</enddate><creator>Park, Shin-Young</creator><creator>Yoon, Dan-Ki</creator><creator>Park, Si-Hyun</creator><creator>Jeon, Jung-In</creator><creator>Lee, Jung-Mi</creator><creator>Yang, Won-Ho</creator><creator>Cho, Yong-Sung</creator><creator>Kwon, Jaymin</creator><creator>Lee, Cheol-Min</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0003-2776-5989</orcidid><orcidid>https://orcid.org/0000-0002-5506-8120</orcidid><orcidid>https://orcid.org/0000-0002-0977-6898</orcidid><orcidid>https://orcid.org/0000-0003-2276-2463</orcidid></search><sort><creationdate>20230612</creationdate><title>Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model</title><author>Park, Shin-Young ; Yoon, Dan-Ki ; Park, Si-Hyun ; Jeon, Jung-In ; Lee, Jung-Mi ; Yang, Won-Ho ; Cho, Yong-Sung ; Kwon, Jaymin ; Lee, Cheol-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_373686263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Shin-Young</creatorcontrib><creatorcontrib>Yoon, Dan-Ki</creatorcontrib><creatorcontrib>Park, Si-Hyun</creatorcontrib><creatorcontrib>Jeon, Jung-In</creatorcontrib><creatorcontrib>Lee, Jung-Mi</creatorcontrib><creatorcontrib>Yang, Won-Ho</creatorcontrib><creatorcontrib>Cho, Yong-Sung</creatorcontrib><creatorcontrib>Kwon, Jaymin</creatorcontrib><creatorcontrib>Lee, Cheol-Min</creatorcontrib><collection>PubMed</collection><jtitle>Toxics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Shin-Young</au><au>Yoon, Dan-Ki</au><au>Park, Si-Hyun</au><au>Jeon, Jung-In</au><au>Lee, Jung-Mi</au><au>Yang, Won-Ho</au><au>Cho, Yong-Sung</au><au>Kwon, Jaymin</au><au>Lee, Cheol-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model</atitle><jtitle>Toxics (Basel)</jtitle><addtitle>Toxics</addtitle><date>2023-06-12</date><risdate>2023</risdate><volume>11</volume><issue>6</issue><eissn>2305-6304</eissn><abstract>This study aims to propose an indoor air quality prediction method that can be easily utilized and reflects temporal characteristics using indoor and outdoor input data measured near the indoor target point as input to calculate indoor PM concentration through a multiple linear regression model. The atmospheric conditions and air pollution detected in one-minute intervals using sensor-based monitoring equipment (Dust Mon, Sentry Co Ltd., Seoul, Korea) inside and outside houses from May 2019 to April 2021 were used to develop the prediction model. By dividing the multiple linear regression model into one-hour increments, we attempted to overcome the limitation of not representing the multiple linear regression model's characteristics over time and limited input variables. The multiple linear regression (MLR) model classified by time unit showed an improvement in explanatory power by up to 9% compared to the existing model, and some hourly models had an explanatory power of 0.30. These results indicated that the model needs to be subdivided by time period to more accurately predict indoor PM concentrations.</abstract><cop>Switzerland</cop><pmid>37368626</pmid><doi>10.3390/toxics11060526</doi><orcidid>https://orcid.org/0000-0003-2776-5989</orcidid><orcidid>https://orcid.org/0000-0002-5506-8120</orcidid><orcidid>https://orcid.org/0000-0002-0977-6898</orcidid><orcidid>https://orcid.org/0000-0003-2276-2463</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2305-6304
ispartof Toxics (Basel), 2023-06, Vol.11 (6)
issn 2305-6304
language eng
recordid cdi_pubmed_primary_37368626
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
title Proposal of a Methodology for Prediction of Indoor PM 2.5 Concentration Using Sensor-Based Residential Environments Monitoring Data and Time-Divided Multiple Linear Regression Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20of%20a%20Methodology%20for%20Prediction%20of%20Indoor%20PM%202.5%20Concentration%20Using%20Sensor-Based%20Residential%20Environments%20Monitoring%20Data%20and%20Time-Divided%20Multiple%20Linear%20Regression%20Model&rft.jtitle=Toxics%20(Basel)&rft.au=Park,%20Shin-Young&rft.date=2023-06-12&rft.volume=11&rft.issue=6&rft.eissn=2305-6304&rft_id=info:doi/10.3390/toxics11060526&rft_dat=%3Cpubmed%3E37368626%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37368626&rfr_iscdi=true