Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply

Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2023-08, Vol.242, p.120104
Hauptverfasser: Mortensen, Anders T, Goonesekera, Estelle M, Dechesne, Arnaud, Elad, Tal, Tang, Kai, Andersen, Henrik R, Smets, Barth F, Valverde-Pérez, Borja
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120104
container_title Water research (Oxford)
container_volume 242
creator Mortensen, Anders T
Goonesekera, Estelle M
Dechesne, Arnaud
Elad, Tal
Tang, Kai
Andersen, Henrik R
Smets, Barth F
Valverde-Pérez, Borja
description Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH loading rates. Biomass productivity and CH loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L ·d , with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L . Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g ·d and 5.42 L·g ·d , respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH and nutrients.
doi_str_mv 10.1016/j.watres.2023.120104
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_37348423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37348423</sourcerecordid><originalsourceid>FETCH-pubmed_primary_373484233</originalsourceid><addsrcrecordid>eNqFT8tKw0AUHQSx9fEHInepi8Z5YdOtRemmCOK-TJJJcsu8mAeaf_FjDWLXrs7hvOAQcstoxSh7ejxWnypHnSpOuagYp4zKM7Jk9Xqz4lLWC3KZ0pFSyrnYXJCFWAtZSy6W5Huv86icz9GHEVvwX9ipjN6B78HHQblZtNjOtjemZOVyAuU6cDhXBu2ghHZqDboB0IGCcWoidmC1baJyGhr0PRoLUas2-wj34_65f3-AfuYJbTHzpPYlwRvw3-HtDiSkEoKZrsl5r0zSN394Re5eXz62u1UojdXdIUS0Kk6H0x3xb-AHaAVfPg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply</title><source>Elsevier ScienceDirect Journals</source><creator>Mortensen, Anders T ; Goonesekera, Estelle M ; Dechesne, Arnaud ; Elad, Tal ; Tang, Kai ; Andersen, Henrik R ; Smets, Barth F ; Valverde-Pérez, Borja</creator><creatorcontrib>Mortensen, Anders T ; Goonesekera, Estelle M ; Dechesne, Arnaud ; Elad, Tal ; Tang, Kai ; Andersen, Henrik R ; Smets, Barth F ; Valverde-Pérez, Borja</creatorcontrib><description>Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH loading rates. Biomass productivity and CH loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L ·d , with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L . Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g ·d and 5.42 L·g ·d , respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH and nutrients.</description><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2023.120104</identifier><identifier>PMID: 37348423</identifier><language>eng</language><publisher>England</publisher><ispartof>Water research (Oxford), 2023-08, Vol.242, p.120104</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37348423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mortensen, Anders T</creatorcontrib><creatorcontrib>Goonesekera, Estelle M</creatorcontrib><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Elad, Tal</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><creatorcontrib>Andersen, Henrik R</creatorcontrib><creatorcontrib>Smets, Barth F</creatorcontrib><creatorcontrib>Valverde-Pérez, Borja</creatorcontrib><title>Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH loading rates. Biomass productivity and CH loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L ·d , with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L . Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g ·d and 5.42 L·g ·d , respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH and nutrients.</description><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFT8tKw0AUHQSx9fEHInepi8Z5YdOtRemmCOK-TJJJcsu8mAeaf_FjDWLXrs7hvOAQcstoxSh7ejxWnypHnSpOuagYp4zKM7Jk9Xqz4lLWC3KZ0pFSyrnYXJCFWAtZSy6W5Huv86icz9GHEVvwX9ipjN6B78HHQblZtNjOtjemZOVyAuU6cDhXBu2ghHZqDboB0IGCcWoidmC1baJyGhr0PRoLUas2-wj34_65f3-AfuYJbTHzpPYlwRvw3-HtDiSkEoKZrsl5r0zSN394Re5eXz62u1UojdXdIUS0Kk6H0x3xb-AHaAVfPg</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Mortensen, Anders T</creator><creator>Goonesekera, Estelle M</creator><creator>Dechesne, Arnaud</creator><creator>Elad, Tal</creator><creator>Tang, Kai</creator><creator>Andersen, Henrik R</creator><creator>Smets, Barth F</creator><creator>Valverde-Pérez, Borja</creator><scope>NPM</scope></search><sort><creationdate>20230815</creationdate><title>Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply</title><author>Mortensen, Anders T ; Goonesekera, Estelle M ; Dechesne, Arnaud ; Elad, Tal ; Tang, Kai ; Andersen, Henrik R ; Smets, Barth F ; Valverde-Pérez, Borja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_373484233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mortensen, Anders T</creatorcontrib><creatorcontrib>Goonesekera, Estelle M</creatorcontrib><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Elad, Tal</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><creatorcontrib>Andersen, Henrik R</creatorcontrib><creatorcontrib>Smets, Barth F</creatorcontrib><creatorcontrib>Valverde-Pérez, Borja</creatorcontrib><collection>PubMed</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortensen, Anders T</au><au>Goonesekera, Estelle M</au><au>Dechesne, Arnaud</au><au>Elad, Tal</au><au>Tang, Kai</au><au>Andersen, Henrik R</au><au>Smets, Barth F</au><au>Valverde-Pérez, Borja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>242</volume><spage>120104</spage><pages>120104-</pages><eissn>1879-2448</eissn><abstract>Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH loading rates. Biomass productivity and CH loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L ·d , with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L . Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g ·d and 5.42 L·g ·d , respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH and nutrients.</abstract><cop>England</cop><pmid>37348423</pmid><doi>10.1016/j.watres.2023.120104</doi></addata></record>
fulltext fulltext
identifier EISSN: 1879-2448
ispartof Water research (Oxford), 2023-08, Vol.242, p.120104
issn 1879-2448
language eng
recordid cdi_pubmed_primary_37348423
source Elsevier ScienceDirect Journals
title Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methanotrophic%20oxidation%20of%20organic%20micropollutants%20and%20nitrogen%20upcycling%20in%20a%20hybrid%20membrane%20biofilm%20reactor%20(hMBfR)%20for%20simultaneous%20O%202%20and%20CH%204%20supply&rft.jtitle=Water%20research%20(Oxford)&rft.au=Mortensen,%20Anders%20T&rft.date=2023-08-15&rft.volume=242&rft.spage=120104&rft.pages=120104-&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2023.120104&rft_dat=%3Cpubmed%3E37348423%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37348423&rfr_iscdi=true