The role of ion solvation in lithium mediated nitrogen reduction
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electroche...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (24), p.12746-12758 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12758 |
---|---|
container_issue | 24 |
container_start_page | 12746 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Westhead, O Spry, M Bagger, A Shen, Z Yadegari, H Favero, S Tort, R Titirici, M Ryan, M. P Jervis, R Katayama, Y Aguadero, A Regoutz, A Grimaud, A Stephens, I. E. L |
description | Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO
4
and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm
−2
at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N
2
reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed
via
Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO
4
, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. |
doi_str_mv | 10.1039/d2ta07686a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37346742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828773988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-459831d1dab6240de49eb4c607ee697881518dc9202616ded319158acd968203</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVtSNe2XAjQjVvCaPlRbfILjpPqTJbZsyndRkRvDfO2O1Pu7mXjgfh3M5CB0RfEEw05eeNhZLoYTdQnsUl3gouRbbm1upATrMeYG7URgLrXfRgEnGheR0D12P51CkWEERp0WIdZFj9Wab_gp1UYVmHtplsQQfbAO-qEOT4gzqIoFvXY8doJ2prTIcfu19NL6_G988Dp9fHp5uRs9Dx3XZDHmpFSOeeDsRlGMPXMOEO4ElgNBSKVIS5Z2mmAoiPHhGNCmVdV4LRTHbR1dr21U76dI4qJtkK7NKYWnTu4k2mL9KHeZmFt8MwVQRxnjncPblkOJrC7kxy5AdVJWtIbbZUEWVlEwr1aGn_9BFbFPdvddTUmnKRG94vqZcijknmG7SEGz6bswtHY8-uxl18Mnv_Bv0u4kOOF4DKbuN-lMu-wB19ZJx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827892364</pqid></control><display><type>article</type><title>The role of ion solvation in lithium mediated nitrogen reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Westhead, O ; Spry, M ; Bagger, A ; Shen, Z ; Yadegari, H ; Favero, S ; Tort, R ; Titirici, M ; Ryan, M. P ; Jervis, R ; Katayama, Y ; Aguadero, A ; Regoutz, A ; Grimaud, A ; Stephens, I. E. L</creator><creatorcontrib>Westhead, O ; Spry, M ; Bagger, A ; Shen, Z ; Yadegari, H ; Favero, S ; Tort, R ; Titirici, M ; Ryan, M. P ; Jervis, R ; Katayama, Y ; Aguadero, A ; Regoutz, A ; Grimaud, A ; Stephens, I. E. L</creatorcontrib><description>Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO
4
and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm
−2
at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N
2
reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed
via
Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO
4
, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07686a</identifier><identifier>PMID: 37346742</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Ammonia ; Chemistry ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrolytes ; Ions ; Lithium ; Lithium perchlorates ; Mass spectrometry ; Mass spectroscopy ; Nitrogen ; Photoelectron spectroscopy ; Photoelectrons ; Raman spectroscopy ; Salts ; Secondary ion mass spectrometry ; Solid electrolytes ; Solvation ; Spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (24), p.12746-12758</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-459831d1dab6240de49eb4c607ee697881518dc9202616ded319158acd968203</citedby><cites>FETCH-LOGICAL-c495t-459831d1dab6240de49eb4c607ee697881518dc9202616ded319158acd968203</cites><orcidid>0000-0003-0773-2100 ; 0000-0002-9966-205X ; 0000-0002-3377-3582 ; 0000-0003-2784-7802 ; 0000-0002-2572-182X ; 0000-0002-3747-3763 ; 0000-0002-0538-8409 ; 0000-0001-7098-1033 ; 0000-0003-2157-492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37346742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westhead, O</creatorcontrib><creatorcontrib>Spry, M</creatorcontrib><creatorcontrib>Bagger, A</creatorcontrib><creatorcontrib>Shen, Z</creatorcontrib><creatorcontrib>Yadegari, H</creatorcontrib><creatorcontrib>Favero, S</creatorcontrib><creatorcontrib>Tort, R</creatorcontrib><creatorcontrib>Titirici, M</creatorcontrib><creatorcontrib>Ryan, M. P</creatorcontrib><creatorcontrib>Jervis, R</creatorcontrib><creatorcontrib>Katayama, Y</creatorcontrib><creatorcontrib>Aguadero, A</creatorcontrib><creatorcontrib>Regoutz, A</creatorcontrib><creatorcontrib>Grimaud, A</creatorcontrib><creatorcontrib>Stephens, I. E. L</creatorcontrib><title>The role of ion solvation in lithium mediated nitrogen reduction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J Mater Chem A Mater</addtitle><description>Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO
4
and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm
−2
at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N
2
reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed
via
Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO
4
, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia.</description><subject>Ambient temperature</subject><subject>Ammonia</subject><subject>Chemistry</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium perchlorates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Nitrogen</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Raman spectroscopy</subject><subject>Salts</subject><subject>Secondary ion mass spectrometry</subject><subject>Solid electrolytes</subject><subject>Solvation</subject><subject>Spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEUhYMoVtSNe2XAjQjVvCaPlRbfILjpPqTJbZsyndRkRvDfO2O1Pu7mXjgfh3M5CB0RfEEw05eeNhZLoYTdQnsUl3gouRbbm1upATrMeYG7URgLrXfRgEnGheR0D12P51CkWEERp0WIdZFj9Wab_gp1UYVmHtplsQQfbAO-qEOT4gzqIoFvXY8doJ2prTIcfu19NL6_G988Dp9fHp5uRs9Dx3XZDHmpFSOeeDsRlGMPXMOEO4ElgNBSKVIS5Z2mmAoiPHhGNCmVdV4LRTHbR1dr21U76dI4qJtkK7NKYWnTu4k2mL9KHeZmFt8MwVQRxnjncPblkOJrC7kxy5AdVJWtIbbZUEWVlEwr1aGn_9BFbFPdvddTUmnKRG94vqZcijknmG7SEGz6bswtHY8-uxl18Mnv_Bv0u4kOOF4DKbuN-lMu-wB19ZJx</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Westhead, O</creator><creator>Spry, M</creator><creator>Bagger, A</creator><creator>Shen, Z</creator><creator>Yadegari, H</creator><creator>Favero, S</creator><creator>Tort, R</creator><creator>Titirici, M</creator><creator>Ryan, M. P</creator><creator>Jervis, R</creator><creator>Katayama, Y</creator><creator>Aguadero, A</creator><creator>Regoutz, A</creator><creator>Grimaud, A</creator><creator>Stephens, I. E. L</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0773-2100</orcidid><orcidid>https://orcid.org/0000-0002-9966-205X</orcidid><orcidid>https://orcid.org/0000-0002-3377-3582</orcidid><orcidid>https://orcid.org/0000-0003-2784-7802</orcidid><orcidid>https://orcid.org/0000-0002-2572-182X</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-0538-8409</orcidid><orcidid>https://orcid.org/0000-0001-7098-1033</orcidid><orcidid>https://orcid.org/0000-0003-2157-492X</orcidid></search><sort><creationdate>20230620</creationdate><title>The role of ion solvation in lithium mediated nitrogen reduction</title><author>Westhead, O ; Spry, M ; Bagger, A ; Shen, Z ; Yadegari, H ; Favero, S ; Tort, R ; Titirici, M ; Ryan, M. P ; Jervis, R ; Katayama, Y ; Aguadero, A ; Regoutz, A ; Grimaud, A ; Stephens, I. E. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-459831d1dab6240de49eb4c607ee697881518dc9202616ded319158acd968203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ambient temperature</topic><topic>Ammonia</topic><topic>Chemistry</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium perchlorates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Nitrogen</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Raman spectroscopy</topic><topic>Salts</topic><topic>Secondary ion mass spectrometry</topic><topic>Solid electrolytes</topic><topic>Solvation</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westhead, O</creatorcontrib><creatorcontrib>Spry, M</creatorcontrib><creatorcontrib>Bagger, A</creatorcontrib><creatorcontrib>Shen, Z</creatorcontrib><creatorcontrib>Yadegari, H</creatorcontrib><creatorcontrib>Favero, S</creatorcontrib><creatorcontrib>Tort, R</creatorcontrib><creatorcontrib>Titirici, M</creatorcontrib><creatorcontrib>Ryan, M. P</creatorcontrib><creatorcontrib>Jervis, R</creatorcontrib><creatorcontrib>Katayama, Y</creatorcontrib><creatorcontrib>Aguadero, A</creatorcontrib><creatorcontrib>Regoutz, A</creatorcontrib><creatorcontrib>Grimaud, A</creatorcontrib><creatorcontrib>Stephens, I. E. L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westhead, O</au><au>Spry, M</au><au>Bagger, A</au><au>Shen, Z</au><au>Yadegari, H</au><au>Favero, S</au><au>Tort, R</au><au>Titirici, M</au><au>Ryan, M. P</au><au>Jervis, R</au><au>Katayama, Y</au><au>Aguadero, A</au><au>Regoutz, A</au><au>Grimaud, A</au><au>Stephens, I. E. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of ion solvation in lithium mediated nitrogen reduction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><addtitle>J Mater Chem A Mater</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>11</volume><issue>24</issue><spage>12746</spage><epage>12758</epage><pages>12746-12758</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO
4
and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm
−2
at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N
2
reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed
via
Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO
4
, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.
Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37346742</pmid><doi>10.1039/d2ta07686a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0773-2100</orcidid><orcidid>https://orcid.org/0000-0002-9966-205X</orcidid><orcidid>https://orcid.org/0000-0002-3377-3582</orcidid><orcidid>https://orcid.org/0000-0003-2784-7802</orcidid><orcidid>https://orcid.org/0000-0002-2572-182X</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-0538-8409</orcidid><orcidid>https://orcid.org/0000-0001-7098-1033</orcidid><orcidid>https://orcid.org/0000-0003-2157-492X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (24), p.12746-12758 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_pubmed_primary_37346742 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ambient temperature Ammonia Chemistry Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Electrolytes Ions Lithium Lithium perchlorates Mass spectrometry Mass spectroscopy Nitrogen Photoelectron spectroscopy Photoelectrons Raman spectroscopy Salts Secondary ion mass spectrometry Solid electrolytes Solvation Spectroscopy |
title | The role of ion solvation in lithium mediated nitrogen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20ion%20solvation%20in%20lithium%20mediated%20nitrogen%20reduction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Westhead,%20O&rft.date=2023-06-20&rft.volume=11&rft.issue=24&rft.spage=12746&rft.epage=12758&rft.pages=12746-12758&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07686a&rft_dat=%3Cproquest_pubme%3E2828773988%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827892364&rft_id=info:pmid/37346742&rfr_iscdi=true |