Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs

Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-06, Vol.33 (6)
Hauptverfasser: Yang, Xiaodong, Ren, Yanlin, Hong, Binyi, He, Aijun, Wang, Jun, Wang, Zhixiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 33
creator Yang, Xiaodong
Ren, Yanlin
Hong, Binyi
He, Aijun
Wang, Jun
Wang, Zhixiao
description Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth–death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67 % when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23 % and 94.76 %, respectively, indicating that our proposed model is useful for the analysis of EEG signals.
doi_str_mv 10.1063/5.0140579
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37276567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822523874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e1385207e3f186cf0de5800de744a1532246eb6010ade8cc740ecd2c8946ecf3</originalsourceid><addsrcrecordid>eNp90c1q3DAQB3BRWpqP9tAXKIJemoLTkWTZ2mMJm7QQ6CV3I0tjr4L8UUlO2Afoe1dmtykUkoskND_-MDOEfGBwyaASX-UlsBJkvXlFThmoTVFXir9e37IsmAQ4IWcx3gMA40K-JSei5nUlq_qU_N7OzuOcnKEWE5rkppG6kUY39h6pHi0dFp9c4VFbut3e5Eo_ah_pshI6Y4guJhwT3U3D5Kd-T1sd0dKc07rCunAI1Z4-out3KZceXHSt8y7taR_0vIvvyJsuZ-L7431O7q63d1ffi9ufNz-uvt0WpmQqFciEkhxqFB1TlenAolSQz7osNZOC87LCtgIG2qIypi4BjeVGbfK_6cQ5-XyIncP0a8GYmsFFg97rEaclNlxxAXmQCjL99B-9n5awNr4qLrlQdZnVxUGZMMUYsGvm4AYd9g2DZl1NI5vjarL9eExc2gHtk_y7iwy-HEA0Lul1Zi-mPYsfpvAPNrPtxB8pkqYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822523874</pqid></control><display><type>article</type><title>Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yang, Xiaodong ; Ren, Yanlin ; Hong, Binyi ; He, Aijun ; Wang, Jun ; Wang, Zhixiao</creator><creatorcontrib>Yang, Xiaodong ; Ren, Yanlin ; Hong, Binyi ; He, Aijun ; Wang, Jun ; Wang, Zhixiao</creatorcontrib><description>Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth–death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67 % when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23 % and 94.76 %, respectively, indicating that our proposed model is useful for the analysis of EEG signals.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0140579</identifier><identifier>PMID: 37276567</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Apexes ; Brain ; Classifiers ; Convulsions &amp; seizures ; Data analysis ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Graph theory ; Graphs ; Homology ; Humans ; Neural networks ; Neurological diseases ; Seizures ; Seizures - diagnosis ; Signal classification ; Signal Processing, Computer-Assisted ; Topology</subject><ispartof>Chaos (Woodbury, N.Y.), 2023-06, Vol.33 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e1385207e3f186cf0de5800de744a1532246eb6010ade8cc740ecd2c8946ecf3</citedby><cites>FETCH-LOGICAL-c418t-e1385207e3f186cf0de5800de744a1532246eb6010ade8cc740ecd2c8946ecf3</cites><orcidid>0000-0003-1792-9601 ; 0000-0001-9618-0891 ; 0000-0002-4256-1477 ; 0009-0007-9631-159X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37276567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Ren, Yanlin</creatorcontrib><creatorcontrib>Hong, Binyi</creatorcontrib><creatorcontrib>He, Aijun</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Zhixiao</creatorcontrib><title>Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth–death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67 % when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23 % and 94.76 %, respectively, indicating that our proposed model is useful for the analysis of EEG signals.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Brain</subject><subject>Classifiers</subject><subject>Convulsions &amp; seizures</subject><subject>Data analysis</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Homology</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neurological diseases</subject><subject>Seizures</subject><subject>Seizures - diagnosis</subject><subject>Signal classification</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Topology</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c1q3DAQB3BRWpqP9tAXKIJemoLTkWTZ2mMJm7QQ6CV3I0tjr4L8UUlO2Afoe1dmtykUkoskND_-MDOEfGBwyaASX-UlsBJkvXlFThmoTVFXir9e37IsmAQ4IWcx3gMA40K-JSei5nUlq_qU_N7OzuOcnKEWE5rkppG6kUY39h6pHi0dFp9c4VFbut3e5Eo_ah_pshI6Y4guJhwT3U3D5Kd-T1sd0dKc07rCunAI1Z4-out3KZceXHSt8y7taR_0vIvvyJsuZ-L7431O7q63d1ffi9ufNz-uvt0WpmQqFciEkhxqFB1TlenAolSQz7osNZOC87LCtgIG2qIypi4BjeVGbfK_6cQ5-XyIncP0a8GYmsFFg97rEaclNlxxAXmQCjL99B-9n5awNr4qLrlQdZnVxUGZMMUYsGvm4AYd9g2DZl1NI5vjarL9eExc2gHtk_y7iwy-HEA0Lul1Zi-mPYsfpvAPNrPtxB8pkqYo</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Yang, Xiaodong</creator><creator>Ren, Yanlin</creator><creator>Hong, Binyi</creator><creator>He, Aijun</creator><creator>Wang, Jun</creator><creator>Wang, Zhixiao</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1792-9601</orcidid><orcidid>https://orcid.org/0000-0001-9618-0891</orcidid><orcidid>https://orcid.org/0000-0002-4256-1477</orcidid><orcidid>https://orcid.org/0009-0007-9631-159X</orcidid></search><sort><creationdate>202306</creationdate><title>Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs</title><author>Yang, Xiaodong ; Ren, Yanlin ; Hong, Binyi ; He, Aijun ; Wang, Jun ; Wang, Zhixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e1385207e3f186cf0de5800de744a1532246eb6010ade8cc740ecd2c8946ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Brain</topic><topic>Classifiers</topic><topic>Convulsions &amp; seizures</topic><topic>Data analysis</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Homology</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neurological diseases</topic><topic>Seizures</topic><topic>Seizures - diagnosis</topic><topic>Signal classification</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaodong</creatorcontrib><creatorcontrib>Ren, Yanlin</creatorcontrib><creatorcontrib>Hong, Binyi</creatorcontrib><creatorcontrib>He, Aijun</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Wang, Zhixiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaodong</au><au>Ren, Yanlin</au><au>Hong, Binyi</au><au>He, Aijun</au><au>Wang, Jun</au><au>Wang, Zhixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2023-06</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Epilepsy is a widespread neurological disorder, and its recurrence and suddenness are making automatic detection of seizure an urgent necessity. For this purpose, this paper performs topological data analysis (TDA) of electroencephalographic (EEG) signals by the medium of graphs to explore the potential brain activity information they contain. Through our innovative method, we first map the time series of epileptic EEGs into bi-directional weighted visibility graphs (BWVGs), which give more comprehensive reflections of the signals compared to previous existing structures. Traditional graph-theoretic measurements are generally partial and mainly consider differences or correlations in vertices or edges, whereas persistent homology (PH), the essential part of TDA, provides an alternative way of thinking by quantifying the topology structure of the graphs and analyzing the evolution of these topological properties with scale changes. Therefore, we analyze the PH for BWVGs and then obtain the two indicators of persistence and birth–death for homology groups to reflect the topology of the mapping graphs of EEG signals and reveal the discrepancies in brain dynamics. Furthermore, we adopt neural networks (NNs) for the automatic detection of epileptic signals and successfully achieve a classification accuracy of 99.67 % when distinguishing among three different sets of EEG signals from seizure, seizure-free, and healthy subjects. In addition, to accommodate multi-leads, we propose a classifier that incorporates graph structure to distinguish seizure and seizure-free EEG signals. The classification accuracies of the two subjects used in the classifier are as high as 99.23 % and 94.76 %, respectively, indicating that our proposed model is useful for the analysis of EEG signals.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37276567</pmid><doi>10.1063/5.0140579</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1792-9601</orcidid><orcidid>https://orcid.org/0000-0001-9618-0891</orcidid><orcidid>https://orcid.org/0000-0002-4256-1477</orcidid><orcidid>https://orcid.org/0009-0007-9631-159X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2023-06, Vol.33 (6)
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_37276567
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Apexes
Brain
Classifiers
Convulsions & seizures
Data analysis
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Graph theory
Graphs
Homology
Humans
Neural networks
Neurological diseases
Seizures
Seizures - diagnosis
Signal classification
Signal Processing, Computer-Assisted
Topology
title Epileptic detection in single and multi-lead EEG signals using persistent homology based on bi-directional weighted visibility graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epileptic%20detection%20in%20single%20and%20multi-lead%20EEG%20signals%20using%20persistent%20homology%20based%20on%20bi-directional%20weighted%20visibility%20graphs&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Yang,%20Xiaodong&rft.date=2023-06&rft.volume=33&rft.issue=6&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0140579&rft_dat=%3Cproquest_pubme%3E2822523874%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822523874&rft_id=info:pmid/37276567&rfr_iscdi=true