Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography
Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those prop...
Gespeichert in:
Veröffentlicht in: | Nanoscale advances 2023-05, Vol.5 (11), p.2879-2886 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2886 |
---|---|
container_issue | 11 |
container_start_page | 2879 |
container_title | Nanoscale advances |
container_volume | 5 |
creator | Xia, Yidong Liu, Jianfang Kancharla, Rahul Li, Jiaoyan Hatamlee, Seyed M Ren, Gang Semeykina, Viktoriya Hamed, Ahmed Kane, Joshua J |
description | Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations.
Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture. |
doi_str_mv | 10.1039/d3na00145h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37260494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821640546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</originalsourceid><addsrcrecordid>eNpVkktv1DAQxyMEolXphTvI4oQqbRk_No8Tqlr6kCq4wNlyJpONUWIH22m134CPjWHbbTnNSPPTfx7_KYq3HE45yOZTJ50B4Go9vCgOxZqXKxASXj7LD4rjGH8CgOBKqap5XRzISpSgGnVY_L5x0W6GFJl1ybM0EJMXbKYwkWlHYrMPxGIKC6YlZ_c2DdYx5-9oZJN3vrMxw5HYRNFn2C-RRTtaNMwZ52cTksWRImu3DMPWb8hZZDQSpuAdS37ym2DmYfumeNWbMdLxQzwqflx--X5-vbr9dnVzfna7QllXadXLBrtecIFC5PXrpq4ReuigU71oajTIheKdbOtelthBBaYHqKjt1rxqjZRHxeed7ry0E3VILgUz6jnYyYSt9sbq_yvODnrj7zQHIWrVQFb4sFPwMVkd0SbCAb1zeSfNm4qXDc_Qx4c2wf9aKCY92Yg0jsZRvpEWteClgrUqM3qyQzH4GAP1-2E46L8e6wv59eyfx9cZfv98_D366GgG3u2AEHFffXoS-QfolK-3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821640546</pqid></control><display><type>article</type><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J</creator><creatorcontrib>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry ; Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE) ; Univ. of Utah, Salt Lake City, UT (United States) ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations.
Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/d3na00145h</identifier><identifier>PMID: 37260494</identifier><language>eng</language><publisher>England: Royal Society of Chemistry (RSC)</publisher><subject>Chemistry ; GEOSCIENCES ; nanoparticle ; TEM</subject><ispartof>Nanoscale advances, 2023-05, Vol.5 (11), p.2879-2886</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2023 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</cites><orcidid>0000-0002-1955-7330 ; 0000-0002-8036-2321 ; 0000-0001-7448-5109 ; 0000-0001-7217-9079 ; 0000000219557330 ; 0000000174485109 ; 0000000172179079 ; 0000000280362321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37260494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1971691$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yidong</creatorcontrib><creatorcontrib>Liu, Jianfang</creatorcontrib><creatorcontrib>Kancharla, Rahul</creatorcontrib><creatorcontrib>Li, Jiaoyan</creatorcontrib><creatorcontrib>Hatamlee, Seyed M</creatorcontrib><creatorcontrib>Ren, Gang</creatorcontrib><creatorcontrib>Semeykina, Viktoriya</creatorcontrib><creatorcontrib>Hamed, Ahmed</creatorcontrib><creatorcontrib>Kane, Joshua J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><title>Nanoscale advances</title><addtitle>Nanoscale Adv</addtitle><description>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations.
Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</description><subject>Chemistry</subject><subject>GEOSCIENCES</subject><subject>nanoparticle</subject><subject>TEM</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkktv1DAQxyMEolXphTvI4oQqbRk_No8Tqlr6kCq4wNlyJpONUWIH22m134CPjWHbbTnNSPPTfx7_KYq3HE45yOZTJ50B4Go9vCgOxZqXKxASXj7LD4rjGH8CgOBKqap5XRzISpSgGnVY_L5x0W6GFJl1ybM0EJMXbKYwkWlHYrMPxGIKC6YlZ_c2DdYx5-9oZJN3vrMxw5HYRNFn2C-RRTtaNMwZ52cTksWRImu3DMPWb8hZZDQSpuAdS37ym2DmYfumeNWbMdLxQzwqflx--X5-vbr9dnVzfna7QllXadXLBrtecIFC5PXrpq4ReuigU71oajTIheKdbOtelthBBaYHqKjt1rxqjZRHxeed7ry0E3VILgUz6jnYyYSt9sbq_yvODnrj7zQHIWrVQFb4sFPwMVkd0SbCAb1zeSfNm4qXDc_Qx4c2wf9aKCY92Yg0jsZRvpEWteClgrUqM3qyQzH4GAP1-2E46L8e6wv59eyfx9cZfv98_D366GgG3u2AEHFffXoS-QfolK-3</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Xia, Yidong</creator><creator>Liu, Jianfang</creator><creator>Kancharla, Rahul</creator><creator>Li, Jiaoyan</creator><creator>Hatamlee, Seyed M</creator><creator>Ren, Gang</creator><creator>Semeykina, Viktoriya</creator><creator>Hamed, Ahmed</creator><creator>Kane, Joshua J</creator><general>Royal Society of Chemistry (RSC)</general><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1955-7330</orcidid><orcidid>https://orcid.org/0000-0002-8036-2321</orcidid><orcidid>https://orcid.org/0000-0001-7448-5109</orcidid><orcidid>https://orcid.org/0000-0001-7217-9079</orcidid><orcidid>https://orcid.org/0000000219557330</orcidid><orcidid>https://orcid.org/0000000174485109</orcidid><orcidid>https://orcid.org/0000000172179079</orcidid><orcidid>https://orcid.org/0000000280362321</orcidid></search><sort><creationdate>20230530</creationdate><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><author>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>GEOSCIENCES</topic><topic>nanoparticle</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yidong</creatorcontrib><creatorcontrib>Liu, Jianfang</creatorcontrib><creatorcontrib>Kancharla, Rahul</creatorcontrib><creatorcontrib>Li, Jiaoyan</creatorcontrib><creatorcontrib>Hatamlee, Seyed M</creatorcontrib><creatorcontrib>Ren, Gang</creatorcontrib><creatorcontrib>Semeykina, Viktoriya</creatorcontrib><creatorcontrib>Hamed, Ahmed</creatorcontrib><creatorcontrib>Kane, Joshua J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yidong</au><au>Liu, Jianfang</au><au>Kancharla, Rahul</au><au>Li, Jiaoyan</au><au>Hatamlee, Seyed M</au><au>Ren, Gang</au><au>Semeykina, Viktoriya</au><au>Hamed, Ahmed</au><au>Kane, Joshua J</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</aucorp><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</atitle><jtitle>Nanoscale advances</jtitle><addtitle>Nanoscale Adv</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>2879</spage><epage>2886</epage><pages>2879-2886</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations.
Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</abstract><cop>England</cop><pub>Royal Society of Chemistry (RSC)</pub><pmid>37260494</pmid><doi>10.1039/d3na00145h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1955-7330</orcidid><orcidid>https://orcid.org/0000-0002-8036-2321</orcidid><orcidid>https://orcid.org/0000-0001-7448-5109</orcidid><orcidid>https://orcid.org/0000-0001-7217-9079</orcidid><orcidid>https://orcid.org/0000000219557330</orcidid><orcidid>https://orcid.org/0000000174485109</orcidid><orcidid>https://orcid.org/0000000172179079</orcidid><orcidid>https://orcid.org/0000000280362321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2516-0230 |
ispartof | Nanoscale advances, 2023-05, Vol.5 (11), p.2879-2886 |
issn | 2516-0230 2516-0230 |
language | eng |
recordid | cdi_pubmed_primary_37260494 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Chemistry GEOSCIENCES nanoparticle TEM |
title | Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%203D%20permeable%20pore%20structure%20within%20novel%20monodisperse%20mesoporous%20silica%20nanoparticles%20by%20cryogenic%20electron%20tomography&rft.jtitle=Nanoscale%20advances&rft.au=Xia,%20Yidong&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2023-05-30&rft.volume=5&rft.issue=11&rft.spage=2879&rft.epage=2886&rft.pages=2879-2886&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/d3na00145h&rft_dat=%3Cproquest_pubme%3E2821640546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821640546&rft_id=info:pmid/37260494&rfr_iscdi=true |