Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography

Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale advances 2023-05, Vol.5 (11), p.2879-2886
Hauptverfasser: Xia, Yidong, Liu, Jianfang, Kancharla, Rahul, Li, Jiaoyan, Hatamlee, Seyed M, Ren, Gang, Semeykina, Viktoriya, Hamed, Ahmed, Kane, Joshua J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2886
container_issue 11
container_start_page 2879
container_title Nanoscale advances
container_volume 5
creator Xia, Yidong
Liu, Jianfang
Kancharla, Rahul
Li, Jiaoyan
Hatamlee, Seyed M
Ren, Gang
Semeykina, Viktoriya
Hamed, Ahmed
Kane, Joshua J
description Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations. Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.
doi_str_mv 10.1039/d3na00145h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37260494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821640546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</originalsourceid><addsrcrecordid>eNpVkktv1DAQxyMEolXphTvI4oQqbRk_No8Tqlr6kCq4wNlyJpONUWIH22m134CPjWHbbTnNSPPTfx7_KYq3HE45yOZTJ50B4Go9vCgOxZqXKxASXj7LD4rjGH8CgOBKqap5XRzISpSgGnVY_L5x0W6GFJl1ybM0EJMXbKYwkWlHYrMPxGIKC6YlZ_c2DdYx5-9oZJN3vrMxw5HYRNFn2C-RRTtaNMwZ52cTksWRImu3DMPWb8hZZDQSpuAdS37ym2DmYfumeNWbMdLxQzwqflx--X5-vbr9dnVzfna7QllXadXLBrtecIFC5PXrpq4ReuigU71oajTIheKdbOtelthBBaYHqKjt1rxqjZRHxeed7ry0E3VILgUz6jnYyYSt9sbq_yvODnrj7zQHIWrVQFb4sFPwMVkd0SbCAb1zeSfNm4qXDc_Qx4c2wf9aKCY92Yg0jsZRvpEWteClgrUqM3qyQzH4GAP1-2E46L8e6wv59eyfx9cZfv98_D366GgG3u2AEHFffXoS-QfolK-3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821640546</pqid></control><display><type>article</type><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J</creator><creatorcontrib>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry ; Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE) ; Univ. of Utah, Salt Lake City, UT (United States) ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations. Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/d3na00145h</identifier><identifier>PMID: 37260494</identifier><language>eng</language><publisher>England: Royal Society of Chemistry (RSC)</publisher><subject>Chemistry ; GEOSCIENCES ; nanoparticle ; TEM</subject><ispartof>Nanoscale advances, 2023-05, Vol.5 (11), p.2879-2886</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2023 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</cites><orcidid>0000-0002-1955-7330 ; 0000-0002-8036-2321 ; 0000-0001-7448-5109 ; 0000-0001-7217-9079 ; 0000000219557330 ; 0000000174485109 ; 0000000172179079 ; 0000000280362321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37260494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1971691$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yidong</creatorcontrib><creatorcontrib>Liu, Jianfang</creatorcontrib><creatorcontrib>Kancharla, Rahul</creatorcontrib><creatorcontrib>Li, Jiaoyan</creatorcontrib><creatorcontrib>Hatamlee, Seyed M</creatorcontrib><creatorcontrib>Ren, Gang</creatorcontrib><creatorcontrib>Semeykina, Viktoriya</creatorcontrib><creatorcontrib>Hamed, Ahmed</creatorcontrib><creatorcontrib>Kane, Joshua J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><title>Nanoscale advances</title><addtitle>Nanoscale Adv</addtitle><description>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations. Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</description><subject>Chemistry</subject><subject>GEOSCIENCES</subject><subject>nanoparticle</subject><subject>TEM</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkktv1DAQxyMEolXphTvI4oQqbRk_No8Tqlr6kCq4wNlyJpONUWIH22m134CPjWHbbTnNSPPTfx7_KYq3HE45yOZTJ50B4Go9vCgOxZqXKxASXj7LD4rjGH8CgOBKqap5XRzISpSgGnVY_L5x0W6GFJl1ybM0EJMXbKYwkWlHYrMPxGIKC6YlZ_c2DdYx5-9oZJN3vrMxw5HYRNFn2C-RRTtaNMwZ52cTksWRImu3DMPWb8hZZDQSpuAdS37ym2DmYfumeNWbMdLxQzwqflx--X5-vbr9dnVzfna7QllXadXLBrtecIFC5PXrpq4ReuigU71oajTIheKdbOtelthBBaYHqKjt1rxqjZRHxeed7ry0E3VILgUz6jnYyYSt9sbq_yvODnrj7zQHIWrVQFb4sFPwMVkd0SbCAb1zeSfNm4qXDc_Qx4c2wf9aKCY92Yg0jsZRvpEWteClgrUqM3qyQzH4GAP1-2E46L8e6wv59eyfx9cZfv98_D366GgG3u2AEHFffXoS-QfolK-3</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Xia, Yidong</creator><creator>Liu, Jianfang</creator><creator>Kancharla, Rahul</creator><creator>Li, Jiaoyan</creator><creator>Hatamlee, Seyed M</creator><creator>Ren, Gang</creator><creator>Semeykina, Viktoriya</creator><creator>Hamed, Ahmed</creator><creator>Kane, Joshua J</creator><general>Royal Society of Chemistry (RSC)</general><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1955-7330</orcidid><orcidid>https://orcid.org/0000-0002-8036-2321</orcidid><orcidid>https://orcid.org/0000-0001-7448-5109</orcidid><orcidid>https://orcid.org/0000-0001-7217-9079</orcidid><orcidid>https://orcid.org/0000000219557330</orcidid><orcidid>https://orcid.org/0000000174485109</orcidid><orcidid>https://orcid.org/0000000172179079</orcidid><orcidid>https://orcid.org/0000000280362321</orcidid></search><sort><creationdate>20230530</creationdate><title>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</title><author>Xia, Yidong ; Liu, Jianfang ; Kancharla, Rahul ; Li, Jiaoyan ; Hatamlee, Seyed M ; Ren, Gang ; Semeykina, Viktoriya ; Hamed, Ahmed ; Kane, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f39cdf212c220398988c0f0d0d4f298cac1241d3b8f36cd070af007ebd517ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>GEOSCIENCES</topic><topic>nanoparticle</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yidong</creatorcontrib><creatorcontrib>Liu, Jianfang</creatorcontrib><creatorcontrib>Kancharla, Rahul</creatorcontrib><creatorcontrib>Li, Jiaoyan</creatorcontrib><creatorcontrib>Hatamlee, Seyed M</creatorcontrib><creatorcontrib>Ren, Gang</creatorcontrib><creatorcontrib>Semeykina, Viktoriya</creatorcontrib><creatorcontrib>Hamed, Ahmed</creatorcontrib><creatorcontrib>Kane, Joshua J</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yidong</au><au>Liu, Jianfang</au><au>Kancharla, Rahul</au><au>Li, Jiaoyan</au><au>Hatamlee, Seyed M</au><au>Ren, Gang</au><au>Semeykina, Viktoriya</au><au>Hamed, Ahmed</au><au>Kane, Joshua J</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Multi-scale Fluid-Solid Interactions in Architected and Natural Materials (MUSE)</aucorp><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography</atitle><jtitle>Nanoscale advances</jtitle><addtitle>Nanoscale Adv</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>2879</spage><epage>2886</epage><pages>2879-2886</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations. Synthetic mesoporous silica nanoparticle (MSN) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as subsurface energy storage or carbon capture.</abstract><cop>England</cop><pub>Royal Society of Chemistry (RSC)</pub><pmid>37260494</pmid><doi>10.1039/d3na00145h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1955-7330</orcidid><orcidid>https://orcid.org/0000-0002-8036-2321</orcidid><orcidid>https://orcid.org/0000-0001-7448-5109</orcidid><orcidid>https://orcid.org/0000-0001-7217-9079</orcidid><orcidid>https://orcid.org/0000000219557330</orcidid><orcidid>https://orcid.org/0000000174485109</orcidid><orcidid>https://orcid.org/0000000172179079</orcidid><orcidid>https://orcid.org/0000000280362321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2516-0230
ispartof Nanoscale advances, 2023-05, Vol.5 (11), p.2879-2886
issn 2516-0230
2516-0230
language eng
recordid cdi_pubmed_primary_37260494
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Chemistry
GEOSCIENCES
nanoparticle
TEM
title Insights into the 3D permeable pore structure within novel monodisperse mesoporous silica nanoparticles by cryogenic electron tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%203D%20permeable%20pore%20structure%20within%20novel%20monodisperse%20mesoporous%20silica%20nanoparticles%20by%20cryogenic%20electron%20tomography&rft.jtitle=Nanoscale%20advances&rft.au=Xia,%20Yidong&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2023-05-30&rft.volume=5&rft.issue=11&rft.spage=2879&rft.epage=2886&rft.pages=2879-2886&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/d3na00145h&rft_dat=%3Cproquest_pubme%3E2821640546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821640546&rft_id=info:pmid/37260494&rfr_iscdi=true