Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity

Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-05, Vol.14 (2), p.551-5518
Hauptverfasser: Mohanan, Manikandan, Ahmad, Humayun, Ajayan, Pooja, Pandey, Prashant K, Calvert, Benjamin M, Zhang, Xinran, Chen, Fu, Kim, Sung J, Kundu, Santanu, Gavvalapalli, Nagarjuna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5518
container_issue 2
container_start_page 551
container_title Chemical science (Cambridge)
container_volume 14
creator Mohanan, Manikandan
Ahmad, Humayun
Ajayan, Pooja
Pandey, Prashant K
Calvert, Benjamin M
Zhang, Xinran
Chen, Fu
Kim, Sung J
Kundu, Santanu
Gavvalapalli, Nagarjuna
description Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network. We show that the π-face strapped repeat units, unlike conventional monomers, help to overcome the strong interchain interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers.
doi_str_mv 10.1039/d3sc00983a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37234908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820023302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-4115c640cdc44c8a6b6da0612da635aa0875dc4ffddb8dc9301b05c890aad4ae3</originalsourceid><addsrcrecordid>eNpdksuLFDEQxoMo7jLuxbsS8CKyo5WkH8lJlvEJCx50z6EmSfdk6E7apHtl_nuzzjo-AqEKvl8-qvhCyFMGrxkI9caKbACUFPiAnHOo2LqphXp46jmckYuc91COEKzm7WNyJlouKgXynHQ32YeejnFwZhkw0TwnnDKdI3Wh98G5RE0M-6XH2Vk6xRSXXMpwGIvSp_hj3l1Ss3OjNzhQG6did0kx2LtndjGzv_Xz4Ql51OGQ3cV9XZGbD--_bT6tr798_Ly5ul6biqt5XTFWm6YCY01VGYnNtrEIDeMWG1EjgmzrInWdtVtpjRLAtlAbqQDRVujEirw9-k7LdnTWuFDWGfSU_IjpoCN6_a8S_E738VYz4NBKJYrDy3uHFL8vLs969Nm4YcDgyuqaSw7AhSh3RV78h-7jkkLZr1CsVVLWbVOoV0fKpJhzct1pGgb6LkL9Tnzd_IrwqsDP_57_hP4OrADPjkDK5qT--QPiJ1QDovQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817988576</pqid></control><display><type>article</type><title>Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mohanan, Manikandan ; Ahmad, Humayun ; Ajayan, Pooja ; Pandey, Prashant K ; Calvert, Benjamin M ; Zhang, Xinran ; Chen, Fu ; Kim, Sung J ; Kundu, Santanu ; Gavvalapalli, Nagarjuna</creator><creatorcontrib>Mohanan, Manikandan ; Ahmad, Humayun ; Ajayan, Pooja ; Pandey, Prashant K ; Calvert, Benjamin M ; Zhang, Xinran ; Chen, Fu ; Kim, Sung J ; Kundu, Santanu ; Gavvalapalli, Nagarjuna</creatorcontrib><description>Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network. We show that the π-face strapped repeat units, unlike conventional monomers, help to overcome the strong interchain interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc00983a</identifier><identifier>PMID: 37234908</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Blending ; Chemistry ; Computer architecture ; Crosslinking ; Density ; Doping ; Efficiency ; Insulation ; Masking ; Monomers ; Polymers ; Straps ; Thin films</subject><ispartof>Chemical science (Cambridge), 2023-05, Vol.14 (2), p.551-5518</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-4115c640cdc44c8a6b6da0612da635aa0875dc4ffddb8dc9301b05c890aad4ae3</citedby><cites>FETCH-LOGICAL-c429t-4115c640cdc44c8a6b6da0612da635aa0875dc4ffddb8dc9301b05c890aad4ae3</cites><orcidid>0000-0002-0767-0512 ; 0000-0002-2007-6606 ; 0000-0002-2812-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207893/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207893/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37234908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanan, Manikandan</creatorcontrib><creatorcontrib>Ahmad, Humayun</creatorcontrib><creatorcontrib>Ajayan, Pooja</creatorcontrib><creatorcontrib>Pandey, Prashant K</creatorcontrib><creatorcontrib>Calvert, Benjamin M</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Chen, Fu</creatorcontrib><creatorcontrib>Kim, Sung J</creatorcontrib><creatorcontrib>Kundu, Santanu</creatorcontrib><creatorcontrib>Gavvalapalli, Nagarjuna</creatorcontrib><title>Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network. We show that the π-face strapped repeat units, unlike conventional monomers, help to overcome the strong interchain interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers.</description><subject>Blending</subject><subject>Chemistry</subject><subject>Computer architecture</subject><subject>Crosslinking</subject><subject>Density</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Insulation</subject><subject>Masking</subject><subject>Monomers</subject><subject>Polymers</subject><subject>Straps</subject><subject>Thin films</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdksuLFDEQxoMo7jLuxbsS8CKyo5WkH8lJlvEJCx50z6EmSfdk6E7apHtl_nuzzjo-AqEKvl8-qvhCyFMGrxkI9caKbACUFPiAnHOo2LqphXp46jmckYuc91COEKzm7WNyJlouKgXynHQ32YeejnFwZhkw0TwnnDKdI3Wh98G5RE0M-6XH2Vk6xRSXXMpwGIvSp_hj3l1Ss3OjNzhQG6did0kx2LtndjGzv_Xz4Ql51OGQ3cV9XZGbD--_bT6tr798_Ly5ul6biqt5XTFWm6YCY01VGYnNtrEIDeMWG1EjgmzrInWdtVtpjRLAtlAbqQDRVujEirw9-k7LdnTWuFDWGfSU_IjpoCN6_a8S_E738VYz4NBKJYrDy3uHFL8vLs969Nm4YcDgyuqaSw7AhSh3RV78h-7jkkLZr1CsVVLWbVOoV0fKpJhzct1pGgb6LkL9Tnzd_IrwqsDP_57_hP4OrADPjkDK5qT--QPiJ1QDovQ</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Mohanan, Manikandan</creator><creator>Ahmad, Humayun</creator><creator>Ajayan, Pooja</creator><creator>Pandey, Prashant K</creator><creator>Calvert, Benjamin M</creator><creator>Zhang, Xinran</creator><creator>Chen, Fu</creator><creator>Kim, Sung J</creator><creator>Kundu, Santanu</creator><creator>Gavvalapalli, Nagarjuna</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0767-0512</orcidid><orcidid>https://orcid.org/0000-0002-2007-6606</orcidid><orcidid>https://orcid.org/0000-0002-2812-1694</orcidid></search><sort><creationdate>20230524</creationdate><title>Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity</title><author>Mohanan, Manikandan ; Ahmad, Humayun ; Ajayan, Pooja ; Pandey, Prashant K ; Calvert, Benjamin M ; Zhang, Xinran ; Chen, Fu ; Kim, Sung J ; Kundu, Santanu ; Gavvalapalli, Nagarjuna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-4115c640cdc44c8a6b6da0612da635aa0875dc4ffddb8dc9301b05c890aad4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blending</topic><topic>Chemistry</topic><topic>Computer architecture</topic><topic>Crosslinking</topic><topic>Density</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Insulation</topic><topic>Masking</topic><topic>Monomers</topic><topic>Polymers</topic><topic>Straps</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanan, Manikandan</creatorcontrib><creatorcontrib>Ahmad, Humayun</creatorcontrib><creatorcontrib>Ajayan, Pooja</creatorcontrib><creatorcontrib>Pandey, Prashant K</creatorcontrib><creatorcontrib>Calvert, Benjamin M</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Chen, Fu</creatorcontrib><creatorcontrib>Kim, Sung J</creatorcontrib><creatorcontrib>Kundu, Santanu</creatorcontrib><creatorcontrib>Gavvalapalli, Nagarjuna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanan, Manikandan</au><au>Ahmad, Humayun</au><au>Ajayan, Pooja</au><au>Pandey, Prashant K</au><au>Calvert, Benjamin M</au><au>Zhang, Xinran</au><au>Chen, Fu</au><au>Kim, Sung J</au><au>Kundu, Santanu</au><au>Gavvalapalli, Nagarjuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>14</volume><issue>2</issue><spage>551</spage><epage>5518</epage><pages>551-5518</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network. We show that the π-face strapped repeat units, unlike conventional monomers, help to overcome the strong interchain interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37234908</pmid><doi>10.1039/d3sc00983a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0767-0512</orcidid><orcidid>https://orcid.org/0000-0002-2007-6606</orcidid><orcidid>https://orcid.org/0000-0002-2812-1694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-05, Vol.14 (2), p.551-5518
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmed_primary_37234908
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Blending
Chemistry
Computer architecture
Crosslinking
Density
Doping
Efficiency
Insulation
Masking
Monomers
Polymers
Straps
Thin films
title Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20molecular%20straps%20to%20engineer%20conjugated%20porous%20polymer%20growth,%20chemical%20doping,%20and%20conductivity&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Mohanan,%20Manikandan&rft.date=2023-05-24&rft.volume=14&rft.issue=2&rft.spage=551&rft.epage=5518&rft.pages=551-5518&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc00983a&rft_dat=%3Cproquest_pubme%3E2820023302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817988576&rft_id=info:pmid/37234908&rfr_iscdi=true