Hue Guidance Network for Single Image Reflection Removal
Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-10, Vol.35 (10), p.13701-13712 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13712 |
---|---|
container_issue | 10 |
container_start_page | 13701 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Zhu, Yurui Fu, Xueyang Zhang, Zheyu Liu, Aiping Xiong, Zhiwei Zha, Zheng-Jun |
description | Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR |
doi_str_mv | 10.1109/TNNLS.2023.3270938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37220051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130817</ieee_id><sourcerecordid>2818750004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRrNT-ARHJ0Uvq7myyuzlK0bZQKtgK3pbN7qRE81GzieK_N7W1OJeZw_O-MA8hV4yOGaPJ3Xq5XKzGQIGPOUiacHVCLoAJCIErdXq85euAjLx_o_0IGosoOScDLgEojdkFUbMOg2mXO1NZDJbYftXNe5DVTbDKq02Bwbw0GwyeMSvQtnld9WdZf5rikpxlpvA4OuwheXl8WE9m4eJpOp_cL0LLEtqGkEqEKDU2FkksIyoMUwItTVIVWwcukrEzhkuWOGRWphk4mkZCplxE0Cf5kNzue7dN_dGhb3WZe4tFYSqsO69BMSXj_rkdCnvUNrX3DWZ62-Slab41o3onTf9K0ztp-iCtD90c-ru0RHeM_Cnqges9kCPiv0bGqWKS_wDBqm73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818750004</pqid></control><display><type>article</type><title>Hue Guidance Network for Single Image Reflection Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</creator><creatorcontrib>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</creatorcontrib><description>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3270938</identifier><identifier>PMID: 37220051</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Deep learning ; Glass ; hue guidance ; Image color analysis ; Image restoration ; Reflection ; reflection removal ; Task analysis ; Training ; Visualization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-10, Vol.35 (10), p.13701-13712</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</cites><orcidid>0000-0001-8849-5228 ; 0000-0002-9787-7460 ; 0000-0003-2510-8993 ; 0000-0001-8036-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37220051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yurui</creatorcontrib><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zheyu</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zha, Zheng-Jun</creatorcontrib><title>Hue Guidance Network for Single Image Reflection Removal</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</description><subject>Deep learning</subject><subject>Glass</subject><subject>hue guidance</subject><subject>Image color analysis</subject><subject>Image restoration</subject><subject>Reflection</subject><subject>reflection removal</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRrNT-ARHJ0Uvq7myyuzlK0bZQKtgK3pbN7qRE81GzieK_N7W1OJeZw_O-MA8hV4yOGaPJ3Xq5XKzGQIGPOUiacHVCLoAJCIErdXq85euAjLx_o_0IGosoOScDLgEojdkFUbMOg2mXO1NZDJbYftXNe5DVTbDKq02Bwbw0GwyeMSvQtnld9WdZf5rikpxlpvA4OuwheXl8WE9m4eJpOp_cL0LLEtqGkEqEKDU2FkksIyoMUwItTVIVWwcukrEzhkuWOGRWphk4mkZCplxE0Cf5kNzue7dN_dGhb3WZe4tFYSqsO69BMSXj_rkdCnvUNrX3DWZ62-Slab41o3onTf9K0ztp-iCtD90c-ru0RHeM_Cnqges9kCPiv0bGqWKS_wDBqm73</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhu, Yurui</creator><creator>Fu, Xueyang</creator><creator>Zhang, Zheyu</creator><creator>Liu, Aiping</creator><creator>Xiong, Zhiwei</creator><creator>Zha, Zheng-Jun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8849-5228</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid><orcidid>https://orcid.org/0000-0003-2510-8993</orcidid><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid></search><sort><creationdate>202410</creationdate><title>Hue Guidance Network for Single Image Reflection Removal</title><author>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Glass</topic><topic>hue guidance</topic><topic>Image color analysis</topic><topic>Image restoration</topic><topic>Reflection</topic><topic>reflection removal</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yurui</creatorcontrib><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zheyu</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zha, Zheng-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yurui</au><au>Fu, Xueyang</au><au>Zhang, Zheyu</au><au>Liu, Aiping</au><au>Xiong, Zhiwei</au><au>Zha, Zheng-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hue Guidance Network for Single Image Reflection Removal</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-10</date><risdate>2024</risdate><volume>35</volume><issue>10</issue><spage>13701</spage><epage>13712</epage><pages>13701-13712</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37220051</pmid><doi>10.1109/TNNLS.2023.3270938</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8849-5228</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid><orcidid>https://orcid.org/0000-0003-2510-8993</orcidid><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-10, Vol.35 (10), p.13701-13712 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_37220051 |
source | IEEE Electronic Library (IEL) |
subjects | Deep learning Glass hue guidance Image color analysis Image restoration Reflection reflection removal Task analysis Training Visualization |
title | Hue Guidance Network for Single Image Reflection Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hue%20Guidance%20Network%20for%20Single%20Image%20Reflection%20Removal&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Yurui&rft.date=2024-10&rft.volume=35&rft.issue=10&rft.spage=13701&rft.epage=13712&rft.pages=13701-13712&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3270938&rft_dat=%3Cproquest_RIE%3E2818750004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818750004&rft_id=info:pmid/37220051&rft_ieee_id=10130817&rfr_iscdi=true |