Hue Guidance Network for Single Image Reflection Removal

Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-10, Vol.35 (10), p.13701-13712
Hauptverfasser: Zhu, Yurui, Fu, Xueyang, Zhang, Zheyu, Liu, Aiping, Xiong, Zhiwei, Zha, Zheng-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13712
container_issue 10
container_start_page 13701
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Zhu, Yurui
Fu, Xueyang
Zhang, Zheyu
Liu, Aiping
Xiong, Zhiwei
Zha, Zheng-Jun
description Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR
doi_str_mv 10.1109/TNNLS.2023.3270938
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37220051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130817</ieee_id><sourcerecordid>2818750004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRrNT-ARHJ0Uvq7myyuzlK0bZQKtgK3pbN7qRE81GzieK_N7W1OJeZw_O-MA8hV4yOGaPJ3Xq5XKzGQIGPOUiacHVCLoAJCIErdXq85euAjLx_o_0IGosoOScDLgEojdkFUbMOg2mXO1NZDJbYftXNe5DVTbDKq02Bwbw0GwyeMSvQtnld9WdZf5rikpxlpvA4OuwheXl8WE9m4eJpOp_cL0LLEtqGkEqEKDU2FkksIyoMUwItTVIVWwcukrEzhkuWOGRWphk4mkZCplxE0Cf5kNzue7dN_dGhb3WZe4tFYSqsO69BMSXj_rkdCnvUNrX3DWZ62-Slab41o3onTf9K0ztp-iCtD90c-ru0RHeM_Cnqges9kCPiv0bGqWKS_wDBqm73</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818750004</pqid></control><display><type>article</type><title>Hue Guidance Network for Single Image Reflection Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</creator><creatorcontrib>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</creatorcontrib><description>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3270938</identifier><identifier>PMID: 37220051</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Deep learning ; Glass ; hue guidance ; Image color analysis ; Image restoration ; Reflection ; reflection removal ; Task analysis ; Training ; Visualization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-10, Vol.35 (10), p.13701-13712</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</cites><orcidid>0000-0001-8849-5228 ; 0000-0002-9787-7460 ; 0000-0003-2510-8993 ; 0000-0001-8036-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37220051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yurui</creatorcontrib><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zheyu</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zha, Zheng-Jun</creatorcontrib><title>Hue Guidance Network for Single Image Reflection Removal</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</description><subject>Deep learning</subject><subject>Glass</subject><subject>hue guidance</subject><subject>Image color analysis</subject><subject>Image restoration</subject><subject>Reflection</subject><subject>reflection removal</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRrNT-ARHJ0Uvq7myyuzlK0bZQKtgK3pbN7qRE81GzieK_N7W1OJeZw_O-MA8hV4yOGaPJ3Xq5XKzGQIGPOUiacHVCLoAJCIErdXq85euAjLx_o_0IGosoOScDLgEojdkFUbMOg2mXO1NZDJbYftXNe5DVTbDKq02Bwbw0GwyeMSvQtnld9WdZf5rikpxlpvA4OuwheXl8WE9m4eJpOp_cL0LLEtqGkEqEKDU2FkksIyoMUwItTVIVWwcukrEzhkuWOGRWphk4mkZCplxE0Cf5kNzue7dN_dGhb3WZe4tFYSqsO69BMSXj_rkdCnvUNrX3DWZ62-Slab41o3onTf9K0ztp-iCtD90c-ru0RHeM_Cnqges9kCPiv0bGqWKS_wDBqm73</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhu, Yurui</creator><creator>Fu, Xueyang</creator><creator>Zhang, Zheyu</creator><creator>Liu, Aiping</creator><creator>Xiong, Zhiwei</creator><creator>Zha, Zheng-Jun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8849-5228</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid><orcidid>https://orcid.org/0000-0003-2510-8993</orcidid><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid></search><sort><creationdate>202410</creationdate><title>Hue Guidance Network for Single Image Reflection Removal</title><author>Zhu, Yurui ; Fu, Xueyang ; Zhang, Zheyu ; Liu, Aiping ; Xiong, Zhiwei ; Zha, Zheng-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-2b7e24bac56957406a186ec09b85cd2d475daa3719de1c7bf2d0b467b3642e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Glass</topic><topic>hue guidance</topic><topic>Image color analysis</topic><topic>Image restoration</topic><topic>Reflection</topic><topic>reflection removal</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yurui</creatorcontrib><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Zhang, Zheyu</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zha, Zheng-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yurui</au><au>Fu, Xueyang</au><au>Zhang, Zheyu</au><au>Liu, Aiping</au><au>Xiong, Zhiwei</au><au>Zha, Zheng-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hue Guidance Network for Single Image Reflection Removal</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-10</date><risdate>2024</risdate><volume>35</volume><issue>10</issue><spage>13701</spage><epage>13712</epage><pages>13701-13712</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Reflection from glasses is ubiquitous in daily life, but it is usually undesirable in photographs. To remove these unwanted noises, existing methods utilize either correlative auxiliary information or handcrafted priors to constrain this ill-posed problem. However, due to their limited capability to describe the properties of reflections, these methods are unable to handle strong and complex reflection scenes. In this article, we propose a hue guidance network (HGNet) with two branches for single image reflection removal (SIRR) by integrating image information and corresponding hue information. The complementarity between image information and hue information has not been noticed. The key to this idea is that we found that hue information can describe reflections well and thus can be used as a superior constraint for the specific SIRR task. Accordingly, the first branch extracts the salient reflection features by directly estimating the hue map. The second branch leverages these effective features, which can help locate salient reflection regions to obtain a high-quality restored image. Furthermore, we design a new cyclic hue loss to provide a more accurate optimization direction for the network training. Experiments substantiate the superiority of our network, especially its excellent generalization ability to various reflection scenes, as compared with state-of-the-arts both qualitatively and quantitatively. Source codes are available at https://github.com/zhuyr97/HGRR</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37220051</pmid><doi>10.1109/TNNLS.2023.3270938</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8849-5228</orcidid><orcidid>https://orcid.org/0000-0002-9787-7460</orcidid><orcidid>https://orcid.org/0000-0003-2510-8993</orcidid><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-10, Vol.35 (10), p.13701-13712
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_pubmed_primary_37220051
source IEEE Electronic Library (IEL)
subjects Deep learning
Glass
hue guidance
Image color analysis
Image restoration
Reflection
reflection removal
Task analysis
Training
Visualization
title Hue Guidance Network for Single Image Reflection Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hue%20Guidance%20Network%20for%20Single%20Image%20Reflection%20Removal&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Yurui&rft.date=2024-10&rft.volume=35&rft.issue=10&rft.spage=13701&rft.epage=13712&rft.pages=13701-13712&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3270938&rft_dat=%3Cproquest_RIE%3E2818750004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818750004&rft_id=info:pmid/37220051&rft_ieee_id=10130817&rfr_iscdi=true