Revisiting the structural basis for biological activity of GMI-1070, a sialyl Lewis x mimetic
When it comes to the treatment of pathologies in which aberrant cell adhesion and extravasation from the bloodstream have been implicated, the selectins represent a central therapeutic target. In this context, the present work investigates the conformational landscape of two prototypes for the desig...
Gespeichert in:
Veröffentlicht in: | Carbohydrate research 2023-07, Vol.529, p.108829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When it comes to the treatment of pathologies in which aberrant cell adhesion and extravasation from the bloodstream have been implicated, the selectins represent a central therapeutic target. In this context, the present work investigates the conformational landscape of two prototypes for the design of new antineoplasic and anti-inflammatory agents: the natural selectin ligand sialyl Lewis
and its mimetic GMI-1070. Accordingly, a series of unbiased molecular dynamics simulations at the microsecond scale using GROMOS 53A6 (GLYC), CHARMM36m and GLYCAM06 force fields were employed, together with ConfID, an analytical method for the characterization of conformational populations of small molecules. Our results for sialyl Lewis
are in agreement with and expand upon prior work. As for the mimetic, our results indicate that, in spite of its conformational restriction, GMI-1070's behavior in solution deviates from what had been proposed, highlighting thus some features that could be optimized, as the development of sialyl Lewis
mimetics continues, and new candidates emerge. |
---|---|
ISSN: | 1873-426X |