Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields

The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2023-07, Vol.1 (8), p.2883-2891
Hauptverfasser: Huang, Ju, Shin, Seung-Jae, Tolborg, Kasper, Ganose, Alex M, Krenzer, Gabriel, Walsh, Aron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2891
container_issue 8
container_start_page 2883
container_title Materials horizons
container_volume 1
creator Huang, Ju
Shin, Seung-Jae
Tolborg, Kasper
Ganose, Alex M
Krenzer, Gabriel
Walsh, Aron
description The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy minimum and that the internal energy is lowered for an inclined stacking arrangement. Here we explore the structural disorder of these frameworks at 300 K through molecular dynamics (MD) simulations using an on-the-fly machine learning force field (MLFF). We find that an initially eclipsed stacking mode spontaneously distorts to form a zigzag configuration that lowers the free energy of the crystal. The simulated diffraction patterns show good agreement with experimental observations. The dynamic disorder from the MLFF MD trajectories is found to persist in mesoscale MD simulations of 155 thousand atoms, giving further confidence in our conclusions. Our simulations show that the stacking behaviour of layered COFs is more complicated than previously understood. Large-scale computer simulations of layered covalent-organic frameworks reveal temporal and spatial fluctuations that can be described as zigzag disorder.
doi_str_mv 10.1039/d3mh00314k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37158579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843806090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-41f0f74f41bc112a90d226e93a5338555a299b46ad18ff9c8c43ea0efc3981793</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgiop68a4UvIhQnTRJ2xzFb1QE0XPJphOt2zTrpFX891ZXV_CUgTy8DPMyts3hkIPQR7XwzwCCy-kSW89A8TQXSi0vZlmssa0YXwCAC6mghFW2JgquSlXoddbeh-DTHv0MyfQDYRJ7Y6dN95TUTQxUIyVNl7TmAwnrxIY302LXp4GeTNfYxJHx-B5oGscx-MQb-9x0mLZoqPtKcYEsJq7Bto6bbMWZNuLWz7vBHs_PHk4u05u7i6uT45vUSi77VHIHrpBO8onlPDMa6izLUQujhCiVUibTeiJzU_PSOW1LKwUaQGeFLnmhxQbbn-fOKLwOGPvKN9Fi25oOwxCrrORc5XoMG-neP_oSBurG7UYlRQk5aBjVwVxZCjESumpGjTf0UXGovmqoTsXt5XcN1yPe_YkcJh7rBf09-gh25oCiXfz-9Sg-ARkIjNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843806090</pqid></control><display><type>article</type><title>Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Huang, Ju ; Shin, Seung-Jae ; Tolborg, Kasper ; Ganose, Alex M ; Krenzer, Gabriel ; Walsh, Aron</creator><creatorcontrib>Huang, Ju ; Shin, Seung-Jae ; Tolborg, Kasper ; Ganose, Alex M ; Krenzer, Gabriel ; Walsh, Aron</creatorcontrib><description>The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy minimum and that the internal energy is lowered for an inclined stacking arrangement. Here we explore the structural disorder of these frameworks at 300 K through molecular dynamics (MD) simulations using an on-the-fly machine learning force field (MLFF). We find that an initially eclipsed stacking mode spontaneously distorts to form a zigzag configuration that lowers the free energy of the crystal. The simulated diffraction patterns show good agreement with experimental observations. The dynamic disorder from the MLFF MD trajectories is found to persist in mesoscale MD simulations of 155 thousand atoms, giving further confidence in our conclusions. Our simulations show that the stacking behaviour of layered COFs is more complicated than previously understood. Large-scale computer simulations of layered covalent-organic frameworks reveal temporal and spatial fluctuations that can be described as zigzag disorder.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh00314k</identifier><identifier>PMID: 37158579</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Density functional theory ; Diffraction patterns ; Free energy ; Internal energy ; Machine learning ; Molecular dynamics ; Room temperature ; Simulation ; Stacking</subject><ispartof>Materials horizons, 2023-07, Vol.1 (8), p.2883-2891</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-41f0f74f41bc112a90d226e93a5338555a299b46ad18ff9c8c43ea0efc3981793</citedby><cites>FETCH-LOGICAL-c414t-41f0f74f41bc112a90d226e93a5338555a299b46ad18ff9c8c43ea0efc3981793</cites><orcidid>0000-0002-7827-7179 ; 0000-0001-5460-7033 ; 0000-0002-4486-3321 ; 0000-0002-0278-115X ; 0000-0003-0074-4424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37158579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Shin, Seung-Jae</creatorcontrib><creatorcontrib>Tolborg, Kasper</creatorcontrib><creatorcontrib>Ganose, Alex M</creatorcontrib><creatorcontrib>Krenzer, Gabriel</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><title>Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields</title><title>Materials horizons</title><addtitle>Mater Horiz</addtitle><description>The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy minimum and that the internal energy is lowered for an inclined stacking arrangement. Here we explore the structural disorder of these frameworks at 300 K through molecular dynamics (MD) simulations using an on-the-fly machine learning force field (MLFF). We find that an initially eclipsed stacking mode spontaneously distorts to form a zigzag configuration that lowers the free energy of the crystal. The simulated diffraction patterns show good agreement with experimental observations. The dynamic disorder from the MLFF MD trajectories is found to persist in mesoscale MD simulations of 155 thousand atoms, giving further confidence in our conclusions. Our simulations show that the stacking behaviour of layered COFs is more complicated than previously understood. Large-scale computer simulations of layered covalent-organic frameworks reveal temporal and spatial fluctuations that can be described as zigzag disorder.</description><subject>Density functional theory</subject><subject>Diffraction patterns</subject><subject>Free energy</subject><subject>Internal energy</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Stacking</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgiop68a4UvIhQnTRJ2xzFb1QE0XPJphOt2zTrpFX891ZXV_CUgTy8DPMyts3hkIPQR7XwzwCCy-kSW89A8TQXSi0vZlmssa0YXwCAC6mghFW2JgquSlXoddbeh-DTHv0MyfQDYRJ7Y6dN95TUTQxUIyVNl7TmAwnrxIY302LXp4GeTNfYxJHx-B5oGscx-MQb-9x0mLZoqPtKcYEsJq7Bto6bbMWZNuLWz7vBHs_PHk4u05u7i6uT45vUSi77VHIHrpBO8onlPDMa6izLUQujhCiVUibTeiJzU_PSOW1LKwUaQGeFLnmhxQbbn-fOKLwOGPvKN9Fi25oOwxCrrORc5XoMG-neP_oSBurG7UYlRQk5aBjVwVxZCjESumpGjTf0UXGovmqoTsXt5XcN1yPe_YkcJh7rBf09-gh25oCiXfz-9Sg-ARkIjNE</recordid><startdate>20230731</startdate><enddate>20230731</enddate><creator>Huang, Ju</creator><creator>Shin, Seung-Jae</creator><creator>Tolborg, Kasper</creator><creator>Ganose, Alex M</creator><creator>Krenzer, Gabriel</creator><creator>Walsh, Aron</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7827-7179</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid><orcidid>https://orcid.org/0000-0002-4486-3321</orcidid><orcidid>https://orcid.org/0000-0002-0278-115X</orcidid><orcidid>https://orcid.org/0000-0003-0074-4424</orcidid></search><sort><creationdate>20230731</creationdate><title>Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields</title><author>Huang, Ju ; Shin, Seung-Jae ; Tolborg, Kasper ; Ganose, Alex M ; Krenzer, Gabriel ; Walsh, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-41f0f74f41bc112a90d226e93a5338555a299b46ad18ff9c8c43ea0efc3981793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Density functional theory</topic><topic>Diffraction patterns</topic><topic>Free energy</topic><topic>Internal energy</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ju</creatorcontrib><creatorcontrib>Shin, Seung-Jae</creatorcontrib><creatorcontrib>Tolborg, Kasper</creatorcontrib><creatorcontrib>Ganose, Alex M</creatorcontrib><creatorcontrib>Krenzer, Gabriel</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ju</au><au>Shin, Seung-Jae</au><au>Tolborg, Kasper</au><au>Ganose, Alex M</au><au>Krenzer, Gabriel</au><au>Walsh, Aron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields</atitle><jtitle>Materials horizons</jtitle><addtitle>Mater Horiz</addtitle><date>2023-07-31</date><risdate>2023</risdate><volume>1</volume><issue>8</issue><spage>2883</spage><epage>2891</epage><pages>2883-2891</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>The local structures of layered covalent-organic frameworks (COFs) deviate from the average crystal structures assigned from X-ray diffraction experiments. For two prototype COFs of Tp-Azo and DAAQ-TFP, density functional theory calculations have shown that the eclipsed structure is not an energy minimum and that the internal energy is lowered for an inclined stacking arrangement. Here we explore the structural disorder of these frameworks at 300 K through molecular dynamics (MD) simulations using an on-the-fly machine learning force field (MLFF). We find that an initially eclipsed stacking mode spontaneously distorts to form a zigzag configuration that lowers the free energy of the crystal. The simulated diffraction patterns show good agreement with experimental observations. The dynamic disorder from the MLFF MD trajectories is found to persist in mesoscale MD simulations of 155 thousand atoms, giving further confidence in our conclusions. Our simulations show that the stacking behaviour of layered COFs is more complicated than previously understood. Large-scale computer simulations of layered covalent-organic frameworks reveal temporal and spatial fluctuations that can be described as zigzag disorder.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37158579</pmid><doi>10.1039/d3mh00314k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7827-7179</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid><orcidid>https://orcid.org/0000-0002-4486-3321</orcidid><orcidid>https://orcid.org/0000-0002-0278-115X</orcidid><orcidid>https://orcid.org/0000-0003-0074-4424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2023-07, Vol.1 (8), p.2883-2891
issn 2051-6347
2051-6355
language eng
recordid cdi_pubmed_primary_37158579
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Density functional theory
Diffraction patterns
Free energy
Internal energy
Machine learning
Molecular dynamics
Room temperature
Simulation
Stacking
title Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning force fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20stacking%20disorder%20in%20layered%20covalent-organic%20frameworks%20from%20machine-learning%20force%20fields&rft.jtitle=Materials%20horizons&rft.au=Huang,%20Ju&rft.date=2023-07-31&rft.volume=1&rft.issue=8&rft.spage=2883&rft.epage=2891&rft.pages=2883-2891&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh00314k&rft_dat=%3Cproquest_pubme%3E2843806090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843806090&rft_id=info:pmid/37158579&rfr_iscdi=true