Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis

Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (18), p.21929-21940
Hauptverfasser: Yuan, Renqiang, Yang, Ning, Huang, Yueru, Li, Weikun, Zeng, Yi, Liu, Zonghao, Tan, Xin, Feng, Fang, Zhang, Qianli, Su, Shao, Chu, Cuilin, Liu, Ling, Ge, Liqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21940
container_issue 18
container_start_page 21929
container_title ACS applied materials & interfaces
container_volume 15
creator Yuan, Renqiang
Yang, Ning
Huang, Yueru
Li, Weikun
Zeng, Yi
Liu, Zonghao
Tan, Xin
Feng, Fang
Zhang, Qianli
Su, Shao
Chu, Cuilin
Liu, Ling
Ge, Liqin
description Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force. Pyramidal LBL MN-rhEGF patches hold so enough mechanical strength to penetrate the stratum corneum, and generated microchannels allow rhEGF direct delivery in situ. The administrable delivery of biomacromolecular rhEGF through hierarchically coated MN arrays follows the diffusion mechanism of Fick’s second law. Numerous efforts further have illustrated that finger-pressing LBL MN-rhEGF patches could not only promote cell proliferation of normal human dermal fibroblasts (NHDF) and human umbilical vein endothelial cells (HUVEC) in vitro but also take significant effects (regenerative epidermis: ∼144 μm; pro-angiogenesis: higher CD31 expression) in accelerating wound healing of mechanically injured rats, compared to the traditional dressing, which relies on passive diffusion. Our proof-of-concept features novel LBL biomacromolecular drug-delivery systems and self-administrated precision medicine modes at the point of care.
doi_str_mv 10.1021/acsami.3c02254
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37126734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a189665429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a143t-c535e5e5d2fa4f1977c848e5f3c89f5ab502543a99da3b119d59b0a0640dcd393</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRrFavHiVnIXU_m-yx1LQKLYJUPIbJ7qTdkmzKphXy701tlTnMMPMYZh4hD4yOGOXsGUwLtRsJQzlX8oLcMC1lnHLFL_9rKQfktm23lI4Fp-qaDETC-DgR8oZ0C-gwxEUX_xbR0pnQeERbYbxE62CPNgqbbD6LVgF8azHUUEUvWLlvDF1UNiHK_Aa86bmv5uBtlO3cmfrANXoMsHeNj6AfTfzaNcde69o7clVC1eL9OQ_J5yxbTV_jxfv8bTpZxMCk2MdGCYV9WF6CLJlOEpPKFFUpTKpLBYWi_eMCtLYgCsa0VbqgQMeSWmOFFkPyeNq7OxQ12nwXXA2hy_8c9MDTCehd5tvmEHx_Ts5ofhScnwTnZ8HiBzgIbj4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yuan, Renqiang ; Yang, Ning ; Huang, Yueru ; Li, Weikun ; Zeng, Yi ; Liu, Zonghao ; Tan, Xin ; Feng, Fang ; Zhang, Qianli ; Su, Shao ; Chu, Cuilin ; Liu, Ling ; Ge, Liqin</creator><creatorcontrib>Yuan, Renqiang ; Yang, Ning ; Huang, Yueru ; Li, Weikun ; Zeng, Yi ; Liu, Zonghao ; Tan, Xin ; Feng, Fang ; Zhang, Qianli ; Su, Shao ; Chu, Cuilin ; Liu, Ling ; Ge, Liqin</creatorcontrib><description>Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force. Pyramidal LBL MN-rhEGF patches hold so enough mechanical strength to penetrate the stratum corneum, and generated microchannels allow rhEGF direct delivery in situ. The administrable delivery of biomacromolecular rhEGF through hierarchically coated MN arrays follows the diffusion mechanism of Fick’s second law. Numerous efforts further have illustrated that finger-pressing LBL MN-rhEGF patches could not only promote cell proliferation of normal human dermal fibroblasts (NHDF) and human umbilical vein endothelial cells (HUVEC) in vitro but also take significant effects (regenerative epidermis: ∼144 μm; pro-angiogenesis: higher CD31 expression) in accelerating wound healing of mechanically injured rats, compared to the traditional dressing, which relies on passive diffusion. Our proof-of-concept features novel LBL biomacromolecular drug-delivery systems and self-administrated precision medicine modes at the point of care.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02254</identifier><identifier>PMID: 37126734</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biological and Medical Applications of Materials and Interfaces ; Cell Proliferation ; Endothelial Cells - metabolism ; Epidermal Growth Factor - metabolism ; Epidermis - metabolism ; Humans ; Rats ; Recombinant Proteins ; Wound Healing</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (18), p.21929-21940</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9622-3732 ; 0000-0002-9399-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c02254$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c02254$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37126734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Renqiang</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Huang, Yueru</creatorcontrib><creatorcontrib>Li, Weikun</creatorcontrib><creatorcontrib>Zeng, Yi</creatorcontrib><creatorcontrib>Liu, Zonghao</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Feng, Fang</creatorcontrib><creatorcontrib>Zhang, Qianli</creatorcontrib><creatorcontrib>Su, Shao</creatorcontrib><creatorcontrib>Chu, Cuilin</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Ge, Liqin</creatorcontrib><title>Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force. Pyramidal LBL MN-rhEGF patches hold so enough mechanical strength to penetrate the stratum corneum, and generated microchannels allow rhEGF direct delivery in situ. The administrable delivery of biomacromolecular rhEGF through hierarchically coated MN arrays follows the diffusion mechanism of Fick’s second law. Numerous efforts further have illustrated that finger-pressing LBL MN-rhEGF patches could not only promote cell proliferation of normal human dermal fibroblasts (NHDF) and human umbilical vein endothelial cells (HUVEC) in vitro but also take significant effects (regenerative epidermis: ∼144 μm; pro-angiogenesis: higher CD31 expression) in accelerating wound healing of mechanically injured rats, compared to the traditional dressing, which relies on passive diffusion. Our proof-of-concept features novel LBL biomacromolecular drug-delivery systems and self-administrated precision medicine modes at the point of care.</description><subject>Animals</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Cell Proliferation</subject><subject>Endothelial Cells - metabolism</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermis - metabolism</subject><subject>Humans</subject><subject>Rats</subject><subject>Recombinant Proteins</subject><subject>Wound Healing</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQQBdRrFavHiVnIXU_m-yx1LQKLYJUPIbJ7qTdkmzKphXy701tlTnMMPMYZh4hD4yOGOXsGUwLtRsJQzlX8oLcMC1lnHLFL_9rKQfktm23lI4Fp-qaDETC-DgR8oZ0C-gwxEUX_xbR0pnQeERbYbxE62CPNgqbbD6LVgF8azHUUEUvWLlvDF1UNiHK_Aa86bmv5uBtlO3cmfrANXoMsHeNj6AfTfzaNcde69o7clVC1eL9OQ_J5yxbTV_jxfv8bTpZxMCk2MdGCYV9WF6CLJlOEpPKFFUpTKpLBYWi_eMCtLYgCsa0VbqgQMeSWmOFFkPyeNq7OxQ12nwXXA2hy_8c9MDTCehd5tvmEHx_Ts5ofhScnwTnZ8HiBzgIbj4</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Yuan, Renqiang</creator><creator>Yang, Ning</creator><creator>Huang, Yueru</creator><creator>Li, Weikun</creator><creator>Zeng, Yi</creator><creator>Liu, Zonghao</creator><creator>Tan, Xin</creator><creator>Feng, Fang</creator><creator>Zhang, Qianli</creator><creator>Su, Shao</creator><creator>Chu, Cuilin</creator><creator>Liu, Ling</creator><creator>Ge, Liqin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-9622-3732</orcidid><orcidid>https://orcid.org/0000-0002-9399-8249</orcidid></search><sort><creationdate>20230510</creationdate><title>Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis</title><author>Yuan, Renqiang ; Yang, Ning ; Huang, Yueru ; Li, Weikun ; Zeng, Yi ; Liu, Zonghao ; Tan, Xin ; Feng, Fang ; Zhang, Qianli ; Su, Shao ; Chu, Cuilin ; Liu, Ling ; Ge, Liqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a143t-c535e5e5d2fa4f1977c848e5f3c89f5ab502543a99da3b119d59b0a0640dcd393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Cell Proliferation</topic><topic>Endothelial Cells - metabolism</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermis - metabolism</topic><topic>Humans</topic><topic>Rats</topic><topic>Recombinant Proteins</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Renqiang</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Huang, Yueru</creatorcontrib><creatorcontrib>Li, Weikun</creatorcontrib><creatorcontrib>Zeng, Yi</creatorcontrib><creatorcontrib>Liu, Zonghao</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Feng, Fang</creatorcontrib><creatorcontrib>Zhang, Qianli</creatorcontrib><creatorcontrib>Su, Shao</creatorcontrib><creatorcontrib>Chu, Cuilin</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Ge, Liqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Renqiang</au><au>Yang, Ning</au><au>Huang, Yueru</au><au>Li, Weikun</au><au>Zeng, Yi</au><au>Liu, Zonghao</au><au>Tan, Xin</au><au>Feng, Fang</au><au>Zhang, Qianli</au><au>Su, Shao</au><au>Chu, Cuilin</au><au>Liu, Ling</au><au>Ge, Liqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>21929</spage><epage>21940</epage><pages>21929-21940</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force. Pyramidal LBL MN-rhEGF patches hold so enough mechanical strength to penetrate the stratum corneum, and generated microchannels allow rhEGF direct delivery in situ. The administrable delivery of biomacromolecular rhEGF through hierarchically coated MN arrays follows the diffusion mechanism of Fick’s second law. Numerous efforts further have illustrated that finger-pressing LBL MN-rhEGF patches could not only promote cell proliferation of normal human dermal fibroblasts (NHDF) and human umbilical vein endothelial cells (HUVEC) in vitro but also take significant effects (regenerative epidermis: ∼144 μm; pro-angiogenesis: higher CD31 expression) in accelerating wound healing of mechanically injured rats, compared to the traditional dressing, which relies on passive diffusion. Our proof-of-concept features novel LBL biomacromolecular drug-delivery systems and self-administrated precision medicine modes at the point of care.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37126734</pmid><doi>10.1021/acsami.3c02254</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9622-3732</orcidid><orcidid>https://orcid.org/0000-0002-9399-8249</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (18), p.21929-21940
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmed_primary_37126734
source MEDLINE; American Chemical Society Journals
subjects Animals
Biological and Medical Applications of Materials and Interfaces
Cell Proliferation
Endothelial Cells - metabolism
Epidermal Growth Factor - metabolism
Epidermis - metabolism
Humans
Rats
Recombinant Proteins
Wound Healing
title Layer-by-Layer Microneedle-Mediated rhEGF Transdermal Delivery for Enhanced Wound Epidermal Regeneration and Angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-by-Layer%20Microneedle-Mediated%20rhEGF%20Transdermal%20Delivery%20for%20Enhanced%20Wound%20Epidermal%20Regeneration%20and%20Angiogenesis&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yuan,%20Renqiang&rft.date=2023-05-10&rft.volume=15&rft.issue=18&rft.spage=21929&rft.epage=21940&rft.pages=21929-21940&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02254&rft_dat=%3Cacs_pubme%3Ea189665429%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37126734&rfr_iscdi=true