High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode

Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this iss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-05, Vol.15 (17), p.783-7811
Hauptverfasser: Sun, Tian, Chen, Tong, Chen, Jiahao, Lou, Qiang, Liang, Zihao, Li, Guijun, Lin, Xiaoyun, Yang, Guoshen, Zhou, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7811
container_issue 17
container_start_page 783
container_title Nanoscale
container_volume 15
creator Sun, Tian
Chen, Tong
Chen, Jiahao
Lou, Qiang
Liang, Zihao
Li, Guijun
Lin, Xiaoyun
Yang, Guoshen
Zhou, Hang
description Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this issue, a titanium nitride (TiN) layer is introduced as a robust corrosion-resistant coating between perovskite films and metal electrodes. By introducing TiN layer, a perovskite photodiode with dark current down to 3.25 × 10 −11 A cm −2 is realized. Consequently, the TiN-based perovskite photodiode shows a specific detectivity of 1.21 × 10 14 cm W −1 Hz 1/2 , which is approximately two orders of magnitude higher than that of the control device without a TiN layer. Under continuous illumination of a 520 nm green light for 576 000 cycles, the responsivity of the TiN-based photodetector remains at 94.27% of its initial value. The TiN-based photodetector exhibits superior stability under thermal stress. After aging at 85 °C for 572 h, the TiN-based photodetector retains 72% of its initial responsivity. Using the TiN-based photodiode, a perovskite image sensor containing 64 × 64 pixelated perovskite photodiodes is constructed over an amorphous silicon thin-film transistor (TFT) backplane. The perovskite image sensor exhibits real-time imaging capability and long-term stability for over 6 months. This study highlights the importance of using metallic nitrides to achieve high-performance and air-stable perovskite devices for optoelectronic applications. Corrosion-resistant titanium nitride was used as the back electrode of perovskite photodetector and image sensor to improve the performance and stability.
doi_str_mv 10.1039/d3nr00410d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37039736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808921691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8ccf776617ef9dea816cd6f2097749e573c3b1a9e6d3e630b5da29c687af12173</originalsourceid><addsrcrecordid>eNpdklFrFDEQx4NYbD198V0J-FKEaLK5SzaP0lYrFAXR5yWbzN6l3U3OJKvcN-rH7NSrJ_Rpwn9-M8N_JoS8Evy94NJ88DJmzpeC-yfkpOFLzqTUzdPDWy2PyfNSrjlXRir5jBxLjXVaqhNyexnWG7aFPKQ82eiAbllgkaKSfpebUFHYpJo8VHA15UJt9DRMdg20QCz3yp9QN3RMcc0q5IkmrLU1pGhHWqrtwxjqjkK0_Qie9jtqqUs5p4IIy1ACQrHSGjCEeaIx1Bw80N66Gwojjs04_gU5GuxY4OVDXJCfny5-nF2yq2-fv5x9vGIOTVfWOjdorZTQMBgPthXKeTU03Gi9NLDS0sleWAPKS1CS9ytvG-NUq-0gGqHlgpzu-25z-jVDqd0UioNxtBHSXLpGG9M2eoWbX5C3j9DrNGe0jVTLW9MIZQRS7_aUQ8slw9BtM-4v7zrBu_v7defy6_e_9ztH-M1Dy7mfwB_QfwdD4PUeyMUdsv8_gLwDL_Wjig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808921691</pqid></control><display><type>article</type><title>High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Tian ; Chen, Tong ; Chen, Jiahao ; Lou, Qiang ; Liang, Zihao ; Li, Guijun ; Lin, Xiaoyun ; Yang, Guoshen ; Zhou, Hang</creator><creatorcontrib>Sun, Tian ; Chen, Tong ; Chen, Jiahao ; Lou, Qiang ; Liang, Zihao ; Li, Guijun ; Lin, Xiaoyun ; Yang, Guoshen ; Zhou, Hang</creatorcontrib><description>Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this issue, a titanium nitride (TiN) layer is introduced as a robust corrosion-resistant coating between perovskite films and metal electrodes. By introducing TiN layer, a perovskite photodiode with dark current down to 3.25 × 10 −11 A cm −2 is realized. Consequently, the TiN-based perovskite photodiode shows a specific detectivity of 1.21 × 10 14 cm W −1 Hz 1/2 , which is approximately two orders of magnitude higher than that of the control device without a TiN layer. Under continuous illumination of a 520 nm green light for 576 000 cycles, the responsivity of the TiN-based photodetector remains at 94.27% of its initial value. The TiN-based photodetector exhibits superior stability under thermal stress. After aging at 85 °C for 572 h, the TiN-based photodetector retains 72% of its initial responsivity. Using the TiN-based photodiode, a perovskite image sensor containing 64 × 64 pixelated perovskite photodiodes is constructed over an amorphous silicon thin-film transistor (TFT) backplane. The perovskite image sensor exhibits real-time imaging capability and long-term stability for over 6 months. This study highlights the importance of using metallic nitrides to achieve high-performance and air-stable perovskite devices for optoelectronic applications. Corrosion-resistant titanium nitride was used as the back electrode of perovskite photodetector and image sensor to improve the performance and stability.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr00410d</identifier><identifier>PMID: 37039736</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amorphous silicon ; Backplanes ; Chemical reactions ; Control equipment ; Corrosion resistance ; Dark current ; Electrodes ; Ion exchange ; Optoelectronic devices ; Perovskites ; Photodiodes ; Photometers ; Protective coatings ; Semiconductor devices ; Silicon films ; Stability ; Thermal stress ; Thin film transistors ; Titanium nitride</subject><ispartof>Nanoscale, 2023-05, Vol.15 (17), p.783-7811</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8ccf776617ef9dea816cd6f2097749e573c3b1a9e6d3e630b5da29c687af12173</citedby><cites>FETCH-LOGICAL-c337t-8ccf776617ef9dea816cd6f2097749e573c3b1a9e6d3e630b5da29c687af12173</cites><orcidid>0000-0001-8330-9692 ; 0000-0002-0472-9515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37039736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Tian</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Liang, Zihao</creatorcontrib><creatorcontrib>Li, Guijun</creatorcontrib><creatorcontrib>Lin, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Guoshen</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><title>High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this issue, a titanium nitride (TiN) layer is introduced as a robust corrosion-resistant coating between perovskite films and metal electrodes. By introducing TiN layer, a perovskite photodiode with dark current down to 3.25 × 10 −11 A cm −2 is realized. Consequently, the TiN-based perovskite photodiode shows a specific detectivity of 1.21 × 10 14 cm W −1 Hz 1/2 , which is approximately two orders of magnitude higher than that of the control device without a TiN layer. Under continuous illumination of a 520 nm green light for 576 000 cycles, the responsivity of the TiN-based photodetector remains at 94.27% of its initial value. The TiN-based photodetector exhibits superior stability under thermal stress. After aging at 85 °C for 572 h, the TiN-based photodetector retains 72% of its initial responsivity. Using the TiN-based photodiode, a perovskite image sensor containing 64 × 64 pixelated perovskite photodiodes is constructed over an amorphous silicon thin-film transistor (TFT) backplane. The perovskite image sensor exhibits real-time imaging capability and long-term stability for over 6 months. This study highlights the importance of using metallic nitrides to achieve high-performance and air-stable perovskite devices for optoelectronic applications. Corrosion-resistant titanium nitride was used as the back electrode of perovskite photodetector and image sensor to improve the performance and stability.</description><subject>Amorphous silicon</subject><subject>Backplanes</subject><subject>Chemical reactions</subject><subject>Control equipment</subject><subject>Corrosion resistance</subject><subject>Dark current</subject><subject>Electrodes</subject><subject>Ion exchange</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Photodiodes</subject><subject>Photometers</subject><subject>Protective coatings</subject><subject>Semiconductor devices</subject><subject>Silicon films</subject><subject>Stability</subject><subject>Thermal stress</subject><subject>Thin film transistors</subject><subject>Titanium nitride</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdklFrFDEQx4NYbD198V0J-FKEaLK5SzaP0lYrFAXR5yWbzN6l3U3OJKvcN-rH7NSrJ_Rpwn9-M8N_JoS8Evy94NJ88DJmzpeC-yfkpOFLzqTUzdPDWy2PyfNSrjlXRir5jBxLjXVaqhNyexnWG7aFPKQ82eiAbllgkaKSfpebUFHYpJo8VHA15UJt9DRMdg20QCz3yp9QN3RMcc0q5IkmrLU1pGhHWqrtwxjqjkK0_Qie9jtqqUs5p4IIy1ACQrHSGjCEeaIx1Bw80N66Gwojjs04_gU5GuxY4OVDXJCfny5-nF2yq2-fv5x9vGIOTVfWOjdorZTQMBgPthXKeTU03Gi9NLDS0sleWAPKS1CS9ytvG-NUq-0gGqHlgpzu-25z-jVDqd0UioNxtBHSXLpGG9M2eoWbX5C3j9DrNGe0jVTLW9MIZQRS7_aUQ8slw9BtM-4v7zrBu_v7defy6_e_9ztH-M1Dy7mfwB_QfwdD4PUeyMUdsv8_gLwDL_Wjig</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Sun, Tian</creator><creator>Chen, Tong</creator><creator>Chen, Jiahao</creator><creator>Lou, Qiang</creator><creator>Liang, Zihao</creator><creator>Li, Guijun</creator><creator>Lin, Xiaoyun</creator><creator>Yang, Guoshen</creator><creator>Zhou, Hang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8330-9692</orcidid><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid></search><sort><creationdate>20230504</creationdate><title>High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode</title><author>Sun, Tian ; Chen, Tong ; Chen, Jiahao ; Lou, Qiang ; Liang, Zihao ; Li, Guijun ; Lin, Xiaoyun ; Yang, Guoshen ; Zhou, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8ccf776617ef9dea816cd6f2097749e573c3b1a9e6d3e630b5da29c687af12173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous silicon</topic><topic>Backplanes</topic><topic>Chemical reactions</topic><topic>Control equipment</topic><topic>Corrosion resistance</topic><topic>Dark current</topic><topic>Electrodes</topic><topic>Ion exchange</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Photodiodes</topic><topic>Photometers</topic><topic>Protective coatings</topic><topic>Semiconductor devices</topic><topic>Silicon films</topic><topic>Stability</topic><topic>Thermal stress</topic><topic>Thin film transistors</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tian</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Liang, Zihao</creatorcontrib><creatorcontrib>Li, Guijun</creatorcontrib><creatorcontrib>Lin, Xiaoyun</creatorcontrib><creatorcontrib>Yang, Guoshen</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tian</au><au>Chen, Tong</au><au>Chen, Jiahao</au><au>Lou, Qiang</au><au>Liang, Zihao</au><au>Li, Guijun</au><au>Lin, Xiaoyun</au><au>Yang, Guoshen</au><au>Zhou, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-04</date><risdate>2023</risdate><volume>15</volume><issue>17</issue><spage>783</spage><epage>7811</epage><pages>783-7811</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Despite the impressive developments in perovskite optoelectronic devices, their long-term stability remains a major challenge. Chemical reactions and ion exchange at the metal/perovskite contact interface are two significant factors that lead to the failure of perovskite devices. To address this issue, a titanium nitride (TiN) layer is introduced as a robust corrosion-resistant coating between perovskite films and metal electrodes. By introducing TiN layer, a perovskite photodiode with dark current down to 3.25 × 10 −11 A cm −2 is realized. Consequently, the TiN-based perovskite photodiode shows a specific detectivity of 1.21 × 10 14 cm W −1 Hz 1/2 , which is approximately two orders of magnitude higher than that of the control device without a TiN layer. Under continuous illumination of a 520 nm green light for 576 000 cycles, the responsivity of the TiN-based photodetector remains at 94.27% of its initial value. The TiN-based photodetector exhibits superior stability under thermal stress. After aging at 85 °C for 572 h, the TiN-based photodetector retains 72% of its initial responsivity. Using the TiN-based photodiode, a perovskite image sensor containing 64 × 64 pixelated perovskite photodiodes is constructed over an amorphous silicon thin-film transistor (TFT) backplane. The perovskite image sensor exhibits real-time imaging capability and long-term stability for over 6 months. This study highlights the importance of using metallic nitrides to achieve high-performance and air-stable perovskite devices for optoelectronic applications. Corrosion-resistant titanium nitride was used as the back electrode of perovskite photodetector and image sensor to improve the performance and stability.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37039736</pmid><doi>10.1039/d3nr00410d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8330-9692</orcidid><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-05, Vol.15 (17), p.783-7811
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_37039736
source Royal Society Of Chemistry Journals 2008-
subjects Amorphous silicon
Backplanes
Chemical reactions
Control equipment
Corrosion resistance
Dark current
Electrodes
Ion exchange
Optoelectronic devices
Perovskites
Photodiodes
Photometers
Protective coatings
Semiconductor devices
Silicon films
Stability
Thermal stress
Thin film transistors
Titanium nitride
title High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20p-i-n%20perovskite%20photodetectors%20and%20image%20sensors%20with%20long-term%20operational%20stability%20enabled%20by%20a%20corrosion-resistant%20titanium%20nitride%20back%20electrode&rft.jtitle=Nanoscale&rft.au=Sun,%20Tian&rft.date=2023-05-04&rft.volume=15&rft.issue=17&rft.spage=783&rft.epage=7811&rft.pages=783-7811&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr00410d&rft_dat=%3Cproquest_pubme%3E2808921691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808921691&rft_id=info:pmid/37039736&rfr_iscdi=true