Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering

In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.PP, p.1-1
Hauptverfasser: Wang, Shiye, Li, Changsheng, Li, Yanming, Yuan, Ye, Wang, Guoren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume PP
creator Wang, Shiye
Li, Changsheng
Li, Yanming
Yuan, Ye
Wang, Guoren
description In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to disengage the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.
doi_str_mv 10.1109/TIP.2023.3246802
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37027595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10053658</ieee_id><sourcerecordid>2798710760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-298c2b918b65a4b0eb1849fa6015ac91e9a838c04157585e02a39efb6d06d5e73</originalsourceid><addsrcrecordid>eNpdkElLxEAQRhtR3O8eRAJevGSs3ruPOm4DbjDqNXQyFYlmktidKP57W2YU8VRF8b6P4hGyR2FEKdjjh8n9iAHjI86EMsBWyCa1gqYAgq3GHaRONRV2g2yF8AJAhaRqnWxwDUxLKzfJ7RTrMp0OHfr3KuAsmTRl6-eur9omOW37vsYGi9ckHpMzxC65Geq-Sp8q_EimQx46V2AyrofQo6-a5x2yVro64O5ybpPHi_OH8VV6fXc5GZ9cpwUXpk-ZNQXLLTW5kk7kgDk1wpZOAZWusBStM9wUIKjU0kgE5rjFMlczUDOJmm-To0Vv59u3AUOfzatQYF27BtshZExboyloBRE9_Ie-tINv4neRMkJxLiSPFCyowrcheCyzzldz5z8zCtm36yy6zr5dZ0vXMXKwLB7yOc5-Az9yI7C_ACpE_NMHkitp-BevZIFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784633453</pqid></control><display><type>article</type><title>Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shiye ; Li, Changsheng ; Li, Yanming ; Yuan, Ye ; Wang, Guoren</creator><creatorcontrib>Wang, Shiye ; Li, Changsheng ; Li, Yanming ; Yuan, Ye ; Wang, Guoren</creatorcontrib><description>In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to disengage the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3246802</identifier><identifier>PMID: 37027595</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Data models ; Deep learning ; Feature extraction ; Information bottleneck ; Information theory ; multi-view ; Mutual information ; Performance enhancement ; Regularization ; Representation learning ; Representations ; self-supervised learning ; subspace clustering ; Subspaces ; Task analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-298c2b918b65a4b0eb1849fa6015ac91e9a838c04157585e02a39efb6d06d5e73</citedby><cites>FETCH-LOGICAL-c348t-298c2b918b65a4b0eb1849fa6015ac91e9a838c04157585e02a39efb6d06d5e73</cites><orcidid>0000-0002-8973-0231 ; 0000-0001-9789-7632 ; 0000-0002-0181-8379 ; 0000-0002-0247-9866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10053658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10053658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shiye</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Li, Yanming</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><title>Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to disengage the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.</description><subject>Clustering</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Information bottleneck</subject><subject>Information theory</subject><subject>multi-view</subject><subject>Mutual information</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>Representation learning</subject><subject>Representations</subject><subject>self-supervised learning</subject><subject>subspace clustering</subject><subject>Subspaces</subject><subject>Task analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkElLxEAQRhtR3O8eRAJevGSs3ruPOm4DbjDqNXQyFYlmktidKP57W2YU8VRF8b6P4hGyR2FEKdjjh8n9iAHjI86EMsBWyCa1gqYAgq3GHaRONRV2g2yF8AJAhaRqnWxwDUxLKzfJ7RTrMp0OHfr3KuAsmTRl6-eur9omOW37vsYGi9ckHpMzxC65Geq-Sp8q_EimQx46V2AyrofQo6-a5x2yVro64O5ybpPHi_OH8VV6fXc5GZ9cpwUXpk-ZNQXLLTW5kk7kgDk1wpZOAZWusBStM9wUIKjU0kgE5rjFMlczUDOJmm-To0Vv59u3AUOfzatQYF27BtshZExboyloBRE9_Ie-tINv4neRMkJxLiSPFCyowrcheCyzzldz5z8zCtm36yy6zr5dZ0vXMXKwLB7yOc5-Az9yI7C_ACpE_NMHkitp-BevZIFU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Shiye</creator><creator>Li, Changsheng</creator><creator>Li, Yanming</creator><creator>Yuan, Ye</creator><creator>Wang, Guoren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8973-0231</orcidid><orcidid>https://orcid.org/0000-0001-9789-7632</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid></search><sort><creationdate>20230101</creationdate><title>Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering</title><author>Wang, Shiye ; Li, Changsheng ; Li, Yanming ; Yuan, Ye ; Wang, Guoren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-298c2b918b65a4b0eb1849fa6015ac91e9a838c04157585e02a39efb6d06d5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Information bottleneck</topic><topic>Information theory</topic><topic>multi-view</topic><topic>Mutual information</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>Representation learning</topic><topic>Representations</topic><topic>self-supervised learning</topic><topic>subspace clustering</topic><topic>Subspaces</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shiye</creatorcontrib><creatorcontrib>Li, Changsheng</creatorcontrib><creatorcontrib>Li, Yanming</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Wang, Guoren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shiye</au><au>Li, Changsheng</au><au>Li, Yanming</au><au>Yuan, Ye</au><au>Wang, Guoren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to disengage the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37027595</pmid><doi>10.1109/TIP.2023.3246802</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8973-0231</orcidid><orcidid>https://orcid.org/0000-0001-9789-7632</orcidid><orcidid>https://orcid.org/0000-0002-0181-8379</orcidid><orcidid>https://orcid.org/0000-0002-0247-9866</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_37027595
source IEEE Electronic Library (IEL)
subjects Clustering
Data models
Deep learning
Feature extraction
Information bottleneck
Information theory
multi-view
Mutual information
Performance enhancement
Regularization
Representation learning
Representations
self-supervised learning
subspace clustering
Subspaces
Task analysis
Training
title Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Information%20Bottleneck%20for%20Deep%20Multi-View%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Shiye&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3246802&rft_dat=%3Cproquest_RIE%3E2798710760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784633453&rft_id=info:pmid/37027595&rft_ieee_id=10053658&rfr_iscdi=true