The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models
Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2023-04, Vol.50 (5), p.1128-1151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 5 |
container_start_page | 1128 |
container_title | Journal of applied statistics |
container_volume | 50 |
creator | Flagg, Kenneth Hoegh, Andrew |
description | Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory. |
doi_str_mv | 10.1080/02664763.2021.2023116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37009597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792374147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-fc81abb12338493c46e8de134deb998a393a58ce0d7e6e7222588eb5a4c78a03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEokvhJ4AiceGS4q84zgnQqi1IK3HZM9bEmWxdOXawk9L-exzttgIOXDyy55l3ZvwWxVtKLihR5CNhUopG8gtGGF0PTql8Vmwol6QiNWfPi83KVCt0VrxK6ZYQomjNXxZnvCGkrdtmU_zY32Bp_YyHCDP2pce0hh1MDgyWME0x3NsRZhv8enM2Z-dQpik_gStdOFTXsKRkwZfbcF9m3mBK5Rh6dOl18WIAl_DNKZ4X-6vL_fZrtft-_W37ZVcZIeq5Goyi0HWUca5Ey42QqHqkXPTYta0C3nKolUHSNyixYYzVSmFXgzCNAsLPi09H2WnpRuwN-jmC01PMk8cHHcDqvzPe3uhDuNOUEMkYZ1nhw0khhp9L_gQ92mTQOfAYlqRZ0wrZSqrWZu__QW_DEn1eb6UYbwQVTabqI2ViSCni8DQNJXp1UD86qFcH9cnBXPfuz1Weqh4ty8DnI2D9EOIIv0J0vZ7hwYU4RPDGJs3_3-M3sfertg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792374147</pqid></control><display><type>article</type><title>The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models</title><source>EBSCOhost Business Source Complete</source><source>PubMed Central</source><creator>Flagg, Kenneth ; Hoegh, Andrew</creator><creatorcontrib>Flagg, Kenneth ; Hoegh, Andrew</creatorcontrib><description>Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2021.2023116</identifier><identifier>PMID: 37009597</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Approximation ; Bayesian hierarchical model ; Gaussian process ; INLA ; log-Gaussian Cox process ; Mathematical analysis ; Partial differential equations ; Review ; spatial point process ; spatial prediction ; Statistical methods</subject><ispartof>Journal of applied statistics, 2023-04, Vol.50 (5), p.1128-1151</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group.</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022 Taylor & Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c445t-fc81abb12338493c46e8de134deb998a393a58ce0d7e6e7222588eb5a4c78a03</cites><orcidid>0000-0003-3136-4766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062232/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062232/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37009597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flagg, Kenneth</creatorcontrib><creatorcontrib>Hoegh, Andrew</creatorcontrib><title>The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory.</description><subject>Approximation</subject><subject>Bayesian hierarchical model</subject><subject>Gaussian process</subject><subject>INLA</subject><subject>log-Gaussian Cox process</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Review</subject><subject>spatial point process</subject><subject>spatial prediction</subject><subject>Statistical methods</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEokvhJ4AiceGS4q84zgnQqi1IK3HZM9bEmWxdOXawk9L-exzttgIOXDyy55l3ZvwWxVtKLihR5CNhUopG8gtGGF0PTql8Vmwol6QiNWfPi83KVCt0VrxK6ZYQomjNXxZnvCGkrdtmU_zY32Bp_YyHCDP2pce0hh1MDgyWME0x3NsRZhv8enM2Z-dQpik_gStdOFTXsKRkwZfbcF9m3mBK5Rh6dOl18WIAl_DNKZ4X-6vL_fZrtft-_W37ZVcZIeq5Goyi0HWUca5Ey42QqHqkXPTYta0C3nKolUHSNyixYYzVSmFXgzCNAsLPi09H2WnpRuwN-jmC01PMk8cHHcDqvzPe3uhDuNOUEMkYZ1nhw0khhp9L_gQ92mTQOfAYlqRZ0wrZSqrWZu__QW_DEn1eb6UYbwQVTabqI2ViSCni8DQNJXp1UD86qFcH9cnBXPfuz1Weqh4ty8DnI2D9EOIIv0J0vZ7hwYU4RPDGJs3_3-M3sfertg</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>Flagg, Kenneth</creator><creator>Hoegh, Andrew</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3136-4766</orcidid></search><sort><creationdate>20230404</creationdate><title>The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models</title><author>Flagg, Kenneth ; Hoegh, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-fc81abb12338493c46e8de134deb998a393a58ce0d7e6e7222588eb5a4c78a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Bayesian hierarchical model</topic><topic>Gaussian process</topic><topic>INLA</topic><topic>log-Gaussian Cox process</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Review</topic><topic>spatial point process</topic><topic>spatial prediction</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flagg, Kenneth</creatorcontrib><creatorcontrib>Hoegh, Andrew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flagg, Kenneth</au><au>Hoegh, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2023-04-04</date><risdate>2023</risdate><volume>50</volume><issue>5</issue><spage>1128</spage><epage>1151</epage><pages>1128-1151</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>37009597</pmid><doi>10.1080/02664763.2021.2023116</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3136-4766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2023-04, Vol.50 (5), p.1128-1151 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_pubmed_primary_37009597 |
source | EBSCOhost Business Source Complete; PubMed Central |
subjects | Approximation Bayesian hierarchical model Gaussian process INLA log-Gaussian Cox process Mathematical analysis Partial differential equations Review spatial point process spatial prediction Statistical methods |
title | The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20integrated%20nested%20Laplace%20approximation%20applied%20to%20spatial%20log-Gaussian%20Cox%20process%20models&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Flagg,%20Kenneth&rft.date=2023-04-04&rft.volume=50&rft.issue=5&rft.spage=1128&rft.epage=1151&rft.pages=1128-1151&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2021.2023116&rft_dat=%3Cproquest_pubme%3E2792374147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792374147&rft_id=info:pmid/37009597&rfr_iscdi=true |