Transfer function approach to understanding periodic forcing of signal transduction networks

Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical biology 2023-05, Vol.20 (3), p.35001
Hauptverfasser: Tran, Nguyen H N, Clayton, Andrew H A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35001
container_title Physical biology
container_volume 20
creator Tran, Nguyen H N
Clayton, Andrew H A
description Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.
doi_str_mv 10.1088/1478-3975/acc300
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36893467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786101857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-bc9d35d233296b87f600fa0309c23eb089175c587841942144179de98b4110e53</originalsourceid><addsrcrecordid>eNp1kMtLxDAQh4Mo7vq4e5KexIPrTpK2SY6y-IIFL3oTQpqHVneTmrSI_70tXRcPepph-OY3w4fQCYZLDJzPcc74jApWzJXWFGAHTbej3V_9BB2k9AZABAG2jya05ILmJZui58eofHI2Zq7zuq2Dz1TTxKD0a9aGrPPGxtQqb2r_kjU21sHUOnMh6mEQXJbqF69WWTvEmG5M8Lb9DPE9HaE9p1bJHm_qIXq6uX5c3M2WD7f3i6vlTNOStLNKC0MLQygloqw4cyWAU0BBaEJtBVxgVuiCM55jkROc55gJYwWvcozBFvQQnY-5_eMfnU2tXNdJ29VKeRu6JAnjJQbMC9ajMKI6hpSidbKJ9VrFL4lBDk7lIE0O0uTotF853aR31dqa7cKPxB44G4E6NPItdLEXkmRTSQKSSqAFAJaNcT148Qf47-FvK9uNKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786101857</pqid></control><display><type>article</type><title>Transfer function approach to understanding periodic forcing of signal transduction networks</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tran, Nguyen H N ; Clayton, Andrew H A</creator><creatorcontrib>Tran, Nguyen H N ; Clayton, Andrew H A</creatorcontrib><description>Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/acc300</identifier><identifier>PMID: 36893467</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>frequency domain ; Models, Biological ; network motifs ; periodic forcing ; Signal Transduction - physiology ; signal transduction networks ; transfer function</subject><ispartof>Physical biology, 2023-05, Vol.20 (3), p.35001</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-bc9d35d233296b87f600fa0309c23eb089175c587841942144179de98b4110e53</cites><orcidid>0000-0002-2746-4193 ; 0000-0002-6182-3049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/acc300/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36893467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Nguyen H N</creatorcontrib><creatorcontrib>Clayton, Andrew H A</creatorcontrib><title>Transfer function approach to understanding periodic forcing of signal transduction networks</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.</description><subject>frequency domain</subject><subject>Models, Biological</subject><subject>network motifs</subject><subject>periodic forcing</subject><subject>Signal Transduction - physiology</subject><subject>signal transduction networks</subject><subject>transfer function</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kMtLxDAQh4Mo7vq4e5KexIPrTpK2SY6y-IIFL3oTQpqHVneTmrSI_70tXRcPepph-OY3w4fQCYZLDJzPcc74jApWzJXWFGAHTbej3V_9BB2k9AZABAG2jya05ILmJZui58eofHI2Zq7zuq2Dz1TTxKD0a9aGrPPGxtQqb2r_kjU21sHUOnMh6mEQXJbqF69WWTvEmG5M8Lb9DPE9HaE9p1bJHm_qIXq6uX5c3M2WD7f3i6vlTNOStLNKC0MLQygloqw4cyWAU0BBaEJtBVxgVuiCM55jkROc55gJYwWvcozBFvQQnY-5_eMfnU2tXNdJ29VKeRu6JAnjJQbMC9ajMKI6hpSidbKJ9VrFL4lBDk7lIE0O0uTotF853aR31dqa7cKPxB44G4E6NPItdLEXkmRTSQKSSqAFAJaNcT148Qf47-FvK9uNKQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tran, Nguyen H N</creator><creator>Clayton, Andrew H A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2746-4193</orcidid><orcidid>https://orcid.org/0000-0002-6182-3049</orcidid></search><sort><creationdate>20230501</creationdate><title>Transfer function approach to understanding periodic forcing of signal transduction networks</title><author>Tran, Nguyen H N ; Clayton, Andrew H A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-bc9d35d233296b87f600fa0309c23eb089175c587841942144179de98b4110e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>frequency domain</topic><topic>Models, Biological</topic><topic>network motifs</topic><topic>periodic forcing</topic><topic>Signal Transduction - physiology</topic><topic>signal transduction networks</topic><topic>transfer function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Nguyen H N</creatorcontrib><creatorcontrib>Clayton, Andrew H A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Nguyen H N</au><au>Clayton, Andrew H A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer function approach to understanding periodic forcing of signal transduction networks</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>35001</spage><pages>35001-</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36893467</pmid><doi>10.1088/1478-3975/acc300</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2746-4193</orcidid><orcidid>https://orcid.org/0000-0002-6182-3049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-3975
ispartof Physical biology, 2023-05, Vol.20 (3), p.35001
issn 1478-3975
1478-3967
1478-3975
language eng
recordid cdi_pubmed_primary_36893467
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects frequency domain
Models, Biological
network motifs
periodic forcing
Signal Transduction - physiology
signal transduction networks
transfer function
title Transfer function approach to understanding periodic forcing of signal transduction networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20function%20approach%20to%20understanding%20periodic%20forcing%20of%20signal%20transduction%20networks&rft.jtitle=Physical%20biology&rft.au=Tran,%20Nguyen%20H%20N&rft.date=2023-05-01&rft.volume=20&rft.issue=3&rft.spage=35001&rft.pages=35001-&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/acc300&rft_dat=%3Cproquest_pubme%3E2786101857%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786101857&rft_id=info:pmid/36893467&rfr_iscdi=true