Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer
To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for t...
Gespeichert in:
Veröffentlicht in: | European journal of nuclear medicine and molecular imaging 2023-07, Vol.50 (8), p.2514 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2514 |
container_title | European journal of nuclear medicine and molecular imaging |
container_volume | 50 |
creator | Lucia, François Bourbonne, Vincent Pleyers, Clémence Dupré, Pierre-François Miranda, Omar Visvikis, Dimitris Pradier, Olivier Abgral, Ronan Mervoyer, Augustin Classe, Jean-Marc Rousseau, Caroline Vos, Wim Hermesse, Johanne Gennigens, Christine De Cuypere, Marjolein Kridelka, Frédéric Schick, Ulrike Hatt, Mathieu Hustinx, Roland Lovinfosse, Pierre |
description | To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using
F-FDG PET/CT and MRI radiomics combined with clinical parameters.
We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital
F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared.
In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively.
Radiomic features extracted from pre-CRT analog and digital
F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_36892667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36892667</sourcerecordid><originalsourceid>FETCH-pubmed_primary_368926673</originalsourceid><addsrcrecordid>eNqFj81KAzEUhYMgbf15BbkvMDjTwjSzrh11URCZfbkmtzRy80OSCcwD-Z6ORdeuDt_hg8O5EqumbbpqW8tuKW5S-qzrRq5ltxDLTSu7ddtuV-LrMHI2ilyORoGmQuyDnRHQaaCCPGI23oE_QSOhr_qnZ3jbD4-74WIc3l8hojbeGpXAek2cIHsIkbRRGQJGrNDHeQN4suEMbnbAuOK50GXIOGCvkHkC1AWdIg2KYjFzB-qH4524PiEnuv_NW_HQ74fdSxXGD0v6GKKxGKfj36_Nv8I3W41avQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</creator><creatorcontrib>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</creatorcontrib><description>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using
F-FDG PET/CT and MRI radiomics combined with clinical parameters.
We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital
F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared.
In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively.
Radiomic features extracted from pre-CRT analog and digital
F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</description><identifier>EISSN: 1619-7089</identifier><identifier>PMID: 36892667</identifier><language>eng</language><publisher>Germany</publisher><subject>Female ; Fluorodeoxyglucose F18 ; Humans ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Magnetic Resonance Imaging ; Positron Emission Tomography Computed Tomography - methods ; Retrospective Studies ; Uterine Cervical Neoplasms - diagnostic imaging ; Uterine Cervical Neoplasms - pathology ; Uterine Cervical Neoplasms - therapy</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2514</ispartof><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7286-1350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36892667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucia, François</creatorcontrib><creatorcontrib>Bourbonne, Vincent</creatorcontrib><creatorcontrib>Pleyers, Clémence</creatorcontrib><creatorcontrib>Dupré, Pierre-François</creatorcontrib><creatorcontrib>Miranda, Omar</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Pradier, Olivier</creatorcontrib><creatorcontrib>Abgral, Ronan</creatorcontrib><creatorcontrib>Mervoyer, Augustin</creatorcontrib><creatorcontrib>Classe, Jean-Marc</creatorcontrib><creatorcontrib>Rousseau, Caroline</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hermesse, Johanne</creatorcontrib><creatorcontrib>Gennigens, Christine</creatorcontrib><creatorcontrib>De Cuypere, Marjolein</creatorcontrib><creatorcontrib>Kridelka, Frédéric</creatorcontrib><creatorcontrib>Schick, Ulrike</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Hustinx, Roland</creatorcontrib><creatorcontrib>Lovinfosse, Pierre</creatorcontrib><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using
F-FDG PET/CT and MRI radiomics combined with clinical parameters.
We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital
F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared.
In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively.
Radiomic features extracted from pre-CRT analog and digital
F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</description><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Positron Emission Tomography Computed Tomography - methods</subject><subject>Retrospective Studies</subject><subject>Uterine Cervical Neoplasms - diagnostic imaging</subject><subject>Uterine Cervical Neoplasms - pathology</subject><subject>Uterine Cervical Neoplasms - therapy</subject><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFj81KAzEUhYMgbf15BbkvMDjTwjSzrh11URCZfbkmtzRy80OSCcwD-Z6ORdeuDt_hg8O5EqumbbpqW8tuKW5S-qzrRq5ltxDLTSu7ddtuV-LrMHI2ilyORoGmQuyDnRHQaaCCPGI23oE_QSOhr_qnZ3jbD4-74WIc3l8hojbeGpXAek2cIHsIkbRRGQJGrNDHeQN4suEMbnbAuOK50GXIOGCvkHkC1AWdIg2KYjFzB-qH4524PiEnuv_NW_HQ74fdSxXGD0v6GKKxGKfj36_Nv8I3W41avQ</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Lucia, François</creator><creator>Bourbonne, Vincent</creator><creator>Pleyers, Clémence</creator><creator>Dupré, Pierre-François</creator><creator>Miranda, Omar</creator><creator>Visvikis, Dimitris</creator><creator>Pradier, Olivier</creator><creator>Abgral, Ronan</creator><creator>Mervoyer, Augustin</creator><creator>Classe, Jean-Marc</creator><creator>Rousseau, Caroline</creator><creator>Vos, Wim</creator><creator>Hermesse, Johanne</creator><creator>Gennigens, Christine</creator><creator>De Cuypere, Marjolein</creator><creator>Kridelka, Frédéric</creator><creator>Schick, Ulrike</creator><creator>Hatt, Mathieu</creator><creator>Hustinx, Roland</creator><creator>Lovinfosse, Pierre</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-7286-1350</orcidid></search><sort><creationdate>202307</creationdate><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><author>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_368926673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Positron Emission Tomography Computed Tomography - methods</topic><topic>Retrospective Studies</topic><topic>Uterine Cervical Neoplasms - diagnostic imaging</topic><topic>Uterine Cervical Neoplasms - pathology</topic><topic>Uterine Cervical Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucia, François</creatorcontrib><creatorcontrib>Bourbonne, Vincent</creatorcontrib><creatorcontrib>Pleyers, Clémence</creatorcontrib><creatorcontrib>Dupré, Pierre-François</creatorcontrib><creatorcontrib>Miranda, Omar</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Pradier, Olivier</creatorcontrib><creatorcontrib>Abgral, Ronan</creatorcontrib><creatorcontrib>Mervoyer, Augustin</creatorcontrib><creatorcontrib>Classe, Jean-Marc</creatorcontrib><creatorcontrib>Rousseau, Caroline</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hermesse, Johanne</creatorcontrib><creatorcontrib>Gennigens, Christine</creatorcontrib><creatorcontrib>De Cuypere, Marjolein</creatorcontrib><creatorcontrib>Kridelka, Frédéric</creatorcontrib><creatorcontrib>Schick, Ulrike</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Hustinx, Roland</creatorcontrib><creatorcontrib>Lovinfosse, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucia, François</au><au>Bourbonne, Vincent</au><au>Pleyers, Clémence</au><au>Dupré, Pierre-François</au><au>Miranda, Omar</au><au>Visvikis, Dimitris</au><au>Pradier, Olivier</au><au>Abgral, Ronan</au><au>Mervoyer, Augustin</au><au>Classe, Jean-Marc</au><au>Rousseau, Caroline</au><au>Vos, Wim</au><au>Hermesse, Johanne</au><au>Gennigens, Christine</au><au>De Cuypere, Marjolein</au><au>Kridelka, Frédéric</au><au>Schick, Ulrike</au><au>Hatt, Mathieu</au><au>Hustinx, Roland</au><au>Lovinfosse, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2023-07</date><risdate>2023</risdate><volume>50</volume><issue>8</issue><spage>2514</spage><pages>2514-</pages><eissn>1619-7089</eissn><abstract>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using
F-FDG PET/CT and MRI radiomics combined with clinical parameters.
We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital
F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared.
In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively.
Radiomic features extracted from pre-CRT analog and digital
F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</abstract><cop>Germany</cop><pmid>36892667</pmid><orcidid>https://orcid.org/0000-0001-7286-1350</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1619-7089 |
ispartof | European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2514 |
issn | 1619-7089 |
language | eng |
recordid | cdi_pubmed_primary_36892667 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Female Fluorodeoxyglucose F18 Humans Lymph Nodes - diagnostic imaging Lymph Nodes - pathology Magnetic Resonance Imaging Positron Emission Tomography Computed Tomography - methods Retrospective Studies Uterine Cervical Neoplasms - diagnostic imaging Uterine Cervical Neoplasms - pathology Uterine Cervical Neoplasms - therapy |
title | Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicentric%20development%20and%20evaluation%20of%2018%20F-FDG%20PET/CT%20and%20MRI%20radiomics%20models%20to%20predict%20para-aortic%20lymph%20node%20involvement%20in%20locally%20advanced%20cervical%20cancer&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Lucia,%20Fran%C3%A7ois&rft.date=2023-07&rft.volume=50&rft.issue=8&rft.spage=2514&rft.pages=2514-&rft.eissn=1619-7089&rft_id=info:doi/&rft_dat=%3Cpubmed%3E36892667%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36892667&rfr_iscdi=true |