Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer

To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2023-07, Vol.50 (8), p.2514
Hauptverfasser: Lucia, François, Bourbonne, Vincent, Pleyers, Clémence, Dupré, Pierre-François, Miranda, Omar, Visvikis, Dimitris, Pradier, Olivier, Abgral, Ronan, Mervoyer, Augustin, Classe, Jean-Marc, Rousseau, Caroline, Vos, Wim, Hermesse, Johanne, Gennigens, Christine, De Cuypere, Marjolein, Kridelka, Frédéric, Schick, Ulrike, Hatt, Mathieu, Hustinx, Roland, Lovinfosse, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2514
container_title European journal of nuclear medicine and molecular imaging
container_volume 50
creator Lucia, François
Bourbonne, Vincent
Pleyers, Clémence
Dupré, Pierre-François
Miranda, Omar
Visvikis, Dimitris
Pradier, Olivier
Abgral, Ronan
Mervoyer, Augustin
Classe, Jean-Marc
Rousseau, Caroline
Vos, Wim
Hermesse, Johanne
Gennigens, Christine
De Cuypere, Marjolein
Kridelka, Frédéric
Schick, Ulrike
Hatt, Mathieu
Hustinx, Roland
Lovinfosse, Pierre
description To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_36892667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36892667</sourcerecordid><originalsourceid>FETCH-pubmed_primary_368926673</originalsourceid><addsrcrecordid>eNqFj81KAzEUhYMgbf15BbkvMDjTwjSzrh11URCZfbkmtzRy80OSCcwD-Z6ORdeuDt_hg8O5EqumbbpqW8tuKW5S-qzrRq5ltxDLTSu7ddtuV-LrMHI2ilyORoGmQuyDnRHQaaCCPGI23oE_QSOhr_qnZ3jbD4-74WIc3l8hojbeGpXAek2cIHsIkbRRGQJGrNDHeQN4suEMbnbAuOK50GXIOGCvkHkC1AWdIg2KYjFzB-qH4524PiEnuv_NW_HQ74fdSxXGD0v6GKKxGKfj36_Nv8I3W41avQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</creator><creatorcontrib>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</creatorcontrib><description>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</description><identifier>EISSN: 1619-7089</identifier><identifier>PMID: 36892667</identifier><language>eng</language><publisher>Germany</publisher><subject>Female ; Fluorodeoxyglucose F18 ; Humans ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Magnetic Resonance Imaging ; Positron Emission Tomography Computed Tomography - methods ; Retrospective Studies ; Uterine Cervical Neoplasms - diagnostic imaging ; Uterine Cervical Neoplasms - pathology ; Uterine Cervical Neoplasms - therapy</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2514</ispartof><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7286-1350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36892667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucia, François</creatorcontrib><creatorcontrib>Bourbonne, Vincent</creatorcontrib><creatorcontrib>Pleyers, Clémence</creatorcontrib><creatorcontrib>Dupré, Pierre-François</creatorcontrib><creatorcontrib>Miranda, Omar</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Pradier, Olivier</creatorcontrib><creatorcontrib>Abgral, Ronan</creatorcontrib><creatorcontrib>Mervoyer, Augustin</creatorcontrib><creatorcontrib>Classe, Jean-Marc</creatorcontrib><creatorcontrib>Rousseau, Caroline</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hermesse, Johanne</creatorcontrib><creatorcontrib>Gennigens, Christine</creatorcontrib><creatorcontrib>De Cuypere, Marjolein</creatorcontrib><creatorcontrib>Kridelka, Frédéric</creatorcontrib><creatorcontrib>Schick, Ulrike</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Hustinx, Roland</creatorcontrib><creatorcontrib>Lovinfosse, Pierre</creatorcontrib><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</description><subject>Female</subject><subject>Fluorodeoxyglucose F18</subject><subject>Humans</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Positron Emission Tomography Computed Tomography - methods</subject><subject>Retrospective Studies</subject><subject>Uterine Cervical Neoplasms - diagnostic imaging</subject><subject>Uterine Cervical Neoplasms - pathology</subject><subject>Uterine Cervical Neoplasms - therapy</subject><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFj81KAzEUhYMgbf15BbkvMDjTwjSzrh11URCZfbkmtzRy80OSCcwD-Z6ORdeuDt_hg8O5EqumbbpqW8tuKW5S-qzrRq5ltxDLTSu7ddtuV-LrMHI2ilyORoGmQuyDnRHQaaCCPGI23oE_QSOhr_qnZ3jbD4-74WIc3l8hojbeGpXAek2cIHsIkbRRGQJGrNDHeQN4suEMbnbAuOK50GXIOGCvkHkC1AWdIg2KYjFzB-qH4524PiEnuv_NW_HQ74fdSxXGD0v6GKKxGKfj36_Nv8I3W41avQ</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Lucia, François</creator><creator>Bourbonne, Vincent</creator><creator>Pleyers, Clémence</creator><creator>Dupré, Pierre-François</creator><creator>Miranda, Omar</creator><creator>Visvikis, Dimitris</creator><creator>Pradier, Olivier</creator><creator>Abgral, Ronan</creator><creator>Mervoyer, Augustin</creator><creator>Classe, Jean-Marc</creator><creator>Rousseau, Caroline</creator><creator>Vos, Wim</creator><creator>Hermesse, Johanne</creator><creator>Gennigens, Christine</creator><creator>De Cuypere, Marjolein</creator><creator>Kridelka, Frédéric</creator><creator>Schick, Ulrike</creator><creator>Hatt, Mathieu</creator><creator>Hustinx, Roland</creator><creator>Lovinfosse, Pierre</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-7286-1350</orcidid></search><sort><creationdate>202307</creationdate><title>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</title><author>Lucia, François ; Bourbonne, Vincent ; Pleyers, Clémence ; Dupré, Pierre-François ; Miranda, Omar ; Visvikis, Dimitris ; Pradier, Olivier ; Abgral, Ronan ; Mervoyer, Augustin ; Classe, Jean-Marc ; Rousseau, Caroline ; Vos, Wim ; Hermesse, Johanne ; Gennigens, Christine ; De Cuypere, Marjolein ; Kridelka, Frédéric ; Schick, Ulrike ; Hatt, Mathieu ; Hustinx, Roland ; Lovinfosse, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_368926673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Female</topic><topic>Fluorodeoxyglucose F18</topic><topic>Humans</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Positron Emission Tomography Computed Tomography - methods</topic><topic>Retrospective Studies</topic><topic>Uterine Cervical Neoplasms - diagnostic imaging</topic><topic>Uterine Cervical Neoplasms - pathology</topic><topic>Uterine Cervical Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucia, François</creatorcontrib><creatorcontrib>Bourbonne, Vincent</creatorcontrib><creatorcontrib>Pleyers, Clémence</creatorcontrib><creatorcontrib>Dupré, Pierre-François</creatorcontrib><creatorcontrib>Miranda, Omar</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Pradier, Olivier</creatorcontrib><creatorcontrib>Abgral, Ronan</creatorcontrib><creatorcontrib>Mervoyer, Augustin</creatorcontrib><creatorcontrib>Classe, Jean-Marc</creatorcontrib><creatorcontrib>Rousseau, Caroline</creatorcontrib><creatorcontrib>Vos, Wim</creatorcontrib><creatorcontrib>Hermesse, Johanne</creatorcontrib><creatorcontrib>Gennigens, Christine</creatorcontrib><creatorcontrib>De Cuypere, Marjolein</creatorcontrib><creatorcontrib>Kridelka, Frédéric</creatorcontrib><creatorcontrib>Schick, Ulrike</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Hustinx, Roland</creatorcontrib><creatorcontrib>Lovinfosse, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucia, François</au><au>Bourbonne, Vincent</au><au>Pleyers, Clémence</au><au>Dupré, Pierre-François</au><au>Miranda, Omar</au><au>Visvikis, Dimitris</au><au>Pradier, Olivier</au><au>Abgral, Ronan</au><au>Mervoyer, Augustin</au><au>Classe, Jean-Marc</au><au>Rousseau, Caroline</au><au>Vos, Wim</au><au>Hermesse, Johanne</au><au>Gennigens, Christine</au><au>De Cuypere, Marjolein</au><au>Kridelka, Frédéric</au><au>Schick, Ulrike</au><au>Hatt, Mathieu</au><au>Hustinx, Roland</au><au>Lovinfosse, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2023-07</date><risdate>2023</risdate><volume>50</volume><issue>8</issue><spage>2514</spage><pages>2514-</pages><eissn>1619-7089</eissn><abstract>To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.</abstract><cop>Germany</cop><pmid>36892667</pmid><orcidid>https://orcid.org/0000-0001-7286-1350</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1619-7089
ispartof European journal of nuclear medicine and molecular imaging, 2023-07, Vol.50 (8), p.2514
issn 1619-7089
language eng
recordid cdi_pubmed_primary_36892667
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Female
Fluorodeoxyglucose F18
Humans
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Magnetic Resonance Imaging
Positron Emission Tomography Computed Tomography - methods
Retrospective Studies
Uterine Cervical Neoplasms - diagnostic imaging
Uterine Cervical Neoplasms - pathology
Uterine Cervical Neoplasms - therapy
title Multicentric development and evaluation of 18 F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicentric%20development%20and%20evaluation%20of%2018%20F-FDG%20PET/CT%20and%20MRI%20radiomics%20models%20to%20predict%20para-aortic%20lymph%20node%20involvement%20in%20locally%20advanced%20cervical%20cancer&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Lucia,%20Fran%C3%A7ois&rft.date=2023-07&rft.volume=50&rft.issue=8&rft.spage=2514&rft.pages=2514-&rft.eissn=1619-7089&rft_id=info:doi/&rft_dat=%3Cpubmed%3E36892667%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36892667&rfr_iscdi=true