Regularized regression when covariates are linked on a network: the 3CoSE algorithm

Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2023-02, Vol.50 (3), p.535-554
Hauptverfasser: Weber, Matthias, Striaukas, Jonas, Schumacher, Martin, Binder, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 554
container_issue 3
container_start_page 535
container_title Journal of applied statistics
container_volume 50
creator Weber, Matthias
Striaukas, Jonas
Schumacher, Martin
Binder, Harald
description Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinforce each other) or negative (connected covariates repress each other), the connection signs have to be estimated jointly with the covariate coefficients. This can be done with an algorithm iterating a connection sign estimation step and a covariate coefficient estimation step. We develop such an algorithm, called 3CoSE, and show detailed simulation results and an application forecasting event times. The algorithm performs well in a variety of settings. We also briefly describe the publicly available R-package developed for this purpose.
doi_str_mv 10.1080/02664763.2021.1982878
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36819080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779341190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7fdf3a3ab498f9db61bea9ffbc4b2e121728431da7d7eebdba8c59422f4809393</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhJ4AssWGTwY8ktlmgolELSJWQKKwtJ7mecevYxU5alV9fRzOtgAWruzjfPfdxEHpNyZoSSd4T1ra1aPmaEUbXVEkmhXyCVpS3pCINZ0_RamGqBTpCL3K-JIRI2vDn6Ii3kqriskIX32E7e5Pcbxhwgm2CnF0M-HYHAffxpihmgoxNAuxduCpUUQ0OMN3GdPUBTzvAfBMvTrHx25jctBtfomfW-AyvDvUY_Tw7_bH5Up1_-_x18-m86mvVTpWwg-WGm65W0qqha2kHRlnb9XXHgDIqmKw5HYwYBEA3dEb2jaoZs7Ukiit-jD7ufa_nboShhzAl4_V1cqNJdzoap_9WgtvpbbzRSnEimsXg3cEgxV8z5EmPLvfgvQkQ56yZEIrXtLyqoG__QS_jnEI5b6G4UoxQXqhmT_Up5pzAPi5DiV5i0w-x6SU2fYit9L3585LHroecCnCyB1ywMY2m_N4PejJ3PiabTOhd1vz_M-4BtN-oQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773992013</pqid></control><display><type>article</type><title>Regularized regression when covariates are linked on a network: the 3CoSE algorithm</title><source>Business Source Complete</source><source>PubMed Central</source><creator>Weber, Matthias ; Striaukas, Jonas ; Schumacher, Martin ; Binder, Harald</creator><creatorcontrib>Weber, Matthias ; Striaukas, Jonas ; Schumacher, Martin ; Binder, Harald</creatorcontrib><description>Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinforce each other) or negative (connected covariates repress each other), the connection signs have to be estimated jointly with the covariate coefficients. This can be done with an algorithm iterating a connection sign estimation step and a covariate coefficient estimation step. We develop such an algorithm, called 3CoSE, and show detailed simulation results and an application forecasting event times. The algorithm performs well in a variety of settings. We also briefly describe the publicly available R-package developed for this purpose.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2021.1982878</identifier><identifier>PMID: 36819080</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Algorithms ; high-dimensional data ; machine learning ; network penalty ; Regressions on networks ; Statistical methods</subject><ispartof>Journal of applied statistics, 2023-02, Vol.50 (3), p.535-554</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7fdf3a3ab498f9db61bea9ffbc4b2e121728431da7d7eebdba8c59422f4809393</citedby><cites>FETCH-LOGICAL-c496t-7fdf3a3ab498f9db61bea9ffbc4b2e121728431da7d7eebdba8c59422f4809393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930759/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36819080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Matthias</creatorcontrib><creatorcontrib>Striaukas, Jonas</creatorcontrib><creatorcontrib>Schumacher, Martin</creatorcontrib><creatorcontrib>Binder, Harald</creatorcontrib><title>Regularized regression when covariates are linked on a network: the 3CoSE algorithm</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinforce each other) or negative (connected covariates repress each other), the connection signs have to be estimated jointly with the covariate coefficients. This can be done with an algorithm iterating a connection sign estimation step and a covariate coefficient estimation step. We develop such an algorithm, called 3CoSE, and show detailed simulation results and an application forecasting event times. The algorithm performs well in a variety of settings. We also briefly describe the publicly available R-package developed for this purpose.</description><subject>Algorithms</subject><subject>high-dimensional data</subject><subject>machine learning</subject><subject>network penalty</subject><subject>Regressions on networks</subject><subject>Statistical methods</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kUtv1DAUhS0EokPhJ4AssWGTwY8ktlmgolELSJWQKKwtJ7mecevYxU5alV9fRzOtgAWruzjfPfdxEHpNyZoSSd4T1ra1aPmaEUbXVEkmhXyCVpS3pCINZ0_RamGqBTpCL3K-JIRI2vDn6Ii3kqriskIX32E7e5Pcbxhwgm2CnF0M-HYHAffxpihmgoxNAuxduCpUUQ0OMN3GdPUBTzvAfBMvTrHx25jctBtfomfW-AyvDvUY_Tw7_bH5Up1_-_x18-m86mvVTpWwg-WGm65W0qqha2kHRlnb9XXHgDIqmKw5HYwYBEA3dEb2jaoZs7Ukiit-jD7ufa_nboShhzAl4_V1cqNJdzoap_9WgtvpbbzRSnEimsXg3cEgxV8z5EmPLvfgvQkQ56yZEIrXtLyqoG__QS_jnEI5b6G4UoxQXqhmT_Up5pzAPi5DiV5i0w-x6SU2fYit9L3585LHroecCnCyB1ywMY2m_N4PejJ3PiabTOhd1vz_M-4BtN-oQw</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Weber, Matthias</creator><creator>Striaukas, Jonas</creator><creator>Schumacher, Martin</creator><creator>Binder, Harald</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230217</creationdate><title>Regularized regression when covariates are linked on a network: the 3CoSE algorithm</title><author>Weber, Matthias ; Striaukas, Jonas ; Schumacher, Martin ; Binder, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7fdf3a3ab498f9db61bea9ffbc4b2e121728431da7d7eebdba8c59422f4809393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>high-dimensional data</topic><topic>machine learning</topic><topic>network penalty</topic><topic>Regressions on networks</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Matthias</creatorcontrib><creatorcontrib>Striaukas, Jonas</creatorcontrib><creatorcontrib>Schumacher, Martin</creatorcontrib><creatorcontrib>Binder, Harald</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Matthias</au><au>Striaukas, Jonas</au><au>Schumacher, Martin</au><au>Binder, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized regression when covariates are linked on a network: the 3CoSE algorithm</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2023-02-17</date><risdate>2023</risdate><volume>50</volume><issue>3</issue><spage>535</spage><epage>554</epage><pages>535-554</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Covariates in regressions may be linked to each other on a network. Knowledge of the network structure can be incorporated into regularized regression settings via a network penalty term. However, when it is unknown whether the connection signs in the network are positive (connected covariates reinforce each other) or negative (connected covariates repress each other), the connection signs have to be estimated jointly with the covariate coefficients. This can be done with an algorithm iterating a connection sign estimation step and a covariate coefficient estimation step. We develop such an algorithm, called 3CoSE, and show detailed simulation results and an application forecasting event times. The algorithm performs well in a variety of settings. We also briefly describe the publicly available R-package developed for this purpose.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>36819080</pmid><doi>10.1080/02664763.2021.1982878</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2023-02, Vol.50 (3), p.535-554
issn 0266-4763
1360-0532
language eng
recordid cdi_pubmed_primary_36819080
source Business Source Complete; PubMed Central
subjects Algorithms
high-dimensional data
machine learning
network penalty
Regressions on networks
Statistical methods
title Regularized regression when covariates are linked on a network: the 3CoSE algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20regression%20when%20covariates%20are%20linked%20on%20a%20network:%20the%203CoSE%20algorithm&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Weber,%20Matthias&rft.date=2023-02-17&rft.volume=50&rft.issue=3&rft.spage=535&rft.epage=554&rft.pages=535-554&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2021.1982878&rft_dat=%3Cproquest_pubme%3E2779341190%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773992013&rft_id=info:pmid/36819080&rfr_iscdi=true