In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation

In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.28 (1)
Hauptverfasser: Grenev, Ivan V, Gavrilov, Vladimir Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Molecules (Basel, Switzerland)
container_volume 28
creator Grenev, Ivan V
Gavrilov, Vladimir Yu
description In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry's constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure-performance relationships for using these materials for adsorption-based and membrane-based separation of He and N made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N separation.
doi_str_mv 10.3390/molecules28010020
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_36615216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36615216</sourcerecordid><originalsourceid>FETCH-pubmed_primary_366152163</originalsourceid><addsrcrecordid>eNqFjrsKwjAUQIMg1tcHuMj9gdo8arGzWOqggnVykVhvJZomJamIf6-Dzk4HDmc4hEwYnQmR0qi2GsuHRs8XlFHKaYf0WcxpKGicBmTg_e1jWczmPRKIJGFzzpI-2a8NFEqr0kJROkSjzBVsBRtspQ537iqNKiFzssandXcP0lzgiFarFj1U1kGO0RY4FNhIJ1tlzYh0K6k9jr8ckmm2OizzsHmca7ycGqdq6V6n34T4G7wBdspCmA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Grenev, Ivan V ; Gavrilov, Vladimir Yu</creator><creatorcontrib>Grenev, Ivan V ; Gavrilov, Vladimir Yu</creatorcontrib><description>In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry's constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure-performance relationships for using these materials for adsorption-based and membrane-based separation of He and N made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N separation.</description><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules28010020</identifier><identifier>PMID: 36615216</identifier><language>eng</language><publisher>Switzerland</publisher><subject>Carbon Dioxide - chemistry ; Helium ; Metal-Organic Frameworks - chemistry ; Nitrogen - chemistry ; Zeolites - chemistry</subject><ispartof>Molecules (Basel, Switzerland), 2022-12, Vol.28 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7501-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36615216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grenev, Ivan V</creatorcontrib><creatorcontrib>Gavrilov, Vladimir Yu</creatorcontrib><title>In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry's constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure-performance relationships for using these materials for adsorption-based and membrane-based separation of He and N made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N separation.</description><subject>Carbon Dioxide - chemistry</subject><subject>Helium</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Nitrogen - chemistry</subject><subject>Zeolites - chemistry</subject><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjrsKwjAUQIMg1tcHuMj9gdo8arGzWOqggnVykVhvJZomJamIf6-Dzk4HDmc4hEwYnQmR0qi2GsuHRs8XlFHKaYf0WcxpKGicBmTg_e1jWczmPRKIJGFzzpI-2a8NFEqr0kJROkSjzBVsBRtspQ537iqNKiFzssandXcP0lzgiFarFj1U1kGO0RY4FNhIJ1tlzYh0K6k9jr8ckmm2OizzsHmca7ycGqdq6V6n34T4G7wBdspCmA</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Grenev, Ivan V</creator><creator>Gavrilov, Vladimir Yu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-7501-4277</orcidid></search><sort><creationdate>20221220</creationdate><title>In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation</title><author>Grenev, Ivan V ; Gavrilov, Vladimir Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_366152163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon Dioxide - chemistry</topic><topic>Helium</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Nitrogen - chemistry</topic><topic>Zeolites - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grenev, Ivan V</creatorcontrib><creatorcontrib>Gavrilov, Vladimir Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grenev, Ivan V</au><au>Gavrilov, Vladimir Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>28</volume><issue>1</issue><eissn>1420-3049</eissn><abstract>In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry's constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure-performance relationships for using these materials for adsorption-based and membrane-based separation of He and N made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N separation.</abstract><cop>Switzerland</cop><pmid>36615216</pmid><doi>10.3390/molecules28010020</doi><orcidid>https://orcid.org/0000-0002-7501-4277</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-12, Vol.28 (1)
issn 1420-3049
language eng
recordid cdi_pubmed_primary_36615216
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Carbon Dioxide - chemistry
Helium
Metal-Organic Frameworks - chemistry
Nitrogen - chemistry
Zeolites - chemistry
title In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N 2 Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Screening%20of%20Metal-Organic%20Frameworks%20and%20Zeolites%20for%20He/N%202%20Separation&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Grenev,%20Ivan%20V&rft.date=2022-12-20&rft.volume=28&rft.issue=1&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules28010020&rft_dat=%3Cpubmed%3E36615216%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36615216&rfr_iscdi=true