Attenuation and dispersion of leaky Rayleigh wave in polycrystals

In this work, we use the characteristic equation of leaky Rayleigh waves (LRWs) and a unified approach of bulk waves proposed by Stanke and Kino [J. Acoust. Soc. Am. 75, 665–681 (1984)] to calculate the attenuation and velocity dispersion of LRWs in polycrystals. Numerical results demonstrate that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2022-12, Vol.152 (6), p.3271-3280
Hauptverfasser: Li, Shan, Song, Yongfeng, Li, Xiongbing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3280
container_issue 6
container_start_page 3271
container_title The Journal of the Acoustical Society of America
container_volume 152
creator Li, Shan
Song, Yongfeng
Li, Xiongbing
description In this work, we use the characteristic equation of leaky Rayleigh waves (LRWs) and a unified approach of bulk waves proposed by Stanke and Kino [J. Acoust. Soc. Am. 75, 665–681 (1984)] to calculate the attenuation and velocity dispersion of LRWs in polycrystals. Numerical results demonstrate that the total attenuation including the leakage attenuation and scattering attenuation is proportional to frequency and independent of grain size in the Rayleigh scattering regime. Meanwhile, the variation of phase velocity in all scattering regimes remains at ∼0.7% according to the theoretical expectation; this means that the velocity dispersion of the LRWs can be ignored, consistent with the conventional viewpoint. Measurements are conducted on stainless steel at different ultrasonic frequencies (all in the Rayleigh scattering regime). The non-paraxial sound field model is used here to eliminate the diffraction loss and to obtain the total attenuation. Experimental results verify that LRWs have very little velocity dispersion. Meanwhile, experimental fitting data reveal that the modified theoretical model can be used to evaluate the total attenuation (only ∼2% discrepancies) of LRWs under the consideration of the diffraction effect. The relative errors between experimental scattering attenuation and theoretical value ranged from 11% to 18%, mainly owing to the effect of surface roughness and measurement inaccuracy.
doi_str_mv 10.1121/10.0016361
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36586881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759961629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2a63ac96e8e28632ebc1ffb6f22f1fd3bd3f8e9ff4d23d59cf147aa87b7514b13</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5v_AHSS1GqPUmbJpdjzA8YCKLXJU1OtNq1NWkn_fd2bg4vxKuH9_DwHngJOYXoCoDC9cAoAs447JExJDQKRULjfTKOhnMYS85H5Mj7tyEmgslDMmI8EVwIGJPptG2x6lRb1FWgKhOYwjfo_DrWNihRvffBo-pLLF5eg0-1wqCogqYue-1636rSH5MDOwBPtpyQ55v50-wuXDzc3s-mi1BTIduQKs6UlhwFUsEZxVyDtTm3lFqwhuWGWYHS2thQZhKpLcSpUiLN0wTiHNiEnG96G1d_dOjbbFl4jWWpKqw7n9E0kZIDp3JQLzaqdrX3Dm3WuGKpXJ9BlK0nW3M72SCfbXu7fIlmp_5sNAiXG8Hrov0eauesaverKmuM_c_-4_kXvvOC_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759961629</pqid></control><display><type>article</type><title>Attenuation and dispersion of leaky Rayleigh wave in polycrystals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Li, Shan ; Song, Yongfeng ; Li, Xiongbing</creator><creatorcontrib>Li, Shan ; Song, Yongfeng ; Li, Xiongbing</creatorcontrib><description>In this work, we use the characteristic equation of leaky Rayleigh waves (LRWs) and a unified approach of bulk waves proposed by Stanke and Kino [J. Acoust. Soc. Am. 75, 665–681 (1984)] to calculate the attenuation and velocity dispersion of LRWs in polycrystals. Numerical results demonstrate that the total attenuation including the leakage attenuation and scattering attenuation is proportional to frequency and independent of grain size in the Rayleigh scattering regime. Meanwhile, the variation of phase velocity in all scattering regimes remains at ∼0.7% according to the theoretical expectation; this means that the velocity dispersion of the LRWs can be ignored, consistent with the conventional viewpoint. Measurements are conducted on stainless steel at different ultrasonic frequencies (all in the Rayleigh scattering regime). The non-paraxial sound field model is used here to eliminate the diffraction loss and to obtain the total attenuation. Experimental results verify that LRWs have very little velocity dispersion. Meanwhile, experimental fitting data reveal that the modified theoretical model can be used to evaluate the total attenuation (only ∼2% discrepancies) of LRWs under the consideration of the diffraction effect. The relative errors between experimental scattering attenuation and theoretical value ranged from 11% to 18%, mainly owing to the effect of surface roughness and measurement inaccuracy.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0016361</identifier><identifier>PMID: 36586881</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2022-12, Vol.152 (6), p.3271-3280</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-2a63ac96e8e28632ebc1ffb6f22f1fd3bd3f8e9ff4d23d59cf147aa87b7514b13</citedby><cites>FETCH-LOGICAL-c289t-2a63ac96e8e28632ebc1ffb6f22f1fd3bd3f8e9ff4d23d59cf147aa87b7514b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0016361$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36586881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Song, Yongfeng</creatorcontrib><creatorcontrib>Li, Xiongbing</creatorcontrib><title>Attenuation and dispersion of leaky Rayleigh wave in polycrystals</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In this work, we use the characteristic equation of leaky Rayleigh waves (LRWs) and a unified approach of bulk waves proposed by Stanke and Kino [J. Acoust. Soc. Am. 75, 665–681 (1984)] to calculate the attenuation and velocity dispersion of LRWs in polycrystals. Numerical results demonstrate that the total attenuation including the leakage attenuation and scattering attenuation is proportional to frequency and independent of grain size in the Rayleigh scattering regime. Meanwhile, the variation of phase velocity in all scattering regimes remains at ∼0.7% according to the theoretical expectation; this means that the velocity dispersion of the LRWs can be ignored, consistent with the conventional viewpoint. Measurements are conducted on stainless steel at different ultrasonic frequencies (all in the Rayleigh scattering regime). The non-paraxial sound field model is used here to eliminate the diffraction loss and to obtain the total attenuation. Experimental results verify that LRWs have very little velocity dispersion. Meanwhile, experimental fitting data reveal that the modified theoretical model can be used to evaluate the total attenuation (only ∼2% discrepancies) of LRWs under the consideration of the diffraction effect. The relative errors between experimental scattering attenuation and theoretical value ranged from 11% to 18%, mainly owing to the effect of surface roughness and measurement inaccuracy.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5v_AHSS1GqPUmbJpdjzA8YCKLXJU1OtNq1NWkn_fd2bg4vxKuH9_DwHngJOYXoCoDC9cAoAs447JExJDQKRULjfTKOhnMYS85H5Mj7tyEmgslDMmI8EVwIGJPptG2x6lRb1FWgKhOYwjfo_DrWNihRvffBo-pLLF5eg0-1wqCogqYue-1636rSH5MDOwBPtpyQ55v50-wuXDzc3s-mi1BTIduQKs6UlhwFUsEZxVyDtTm3lFqwhuWGWYHS2thQZhKpLcSpUiLN0wTiHNiEnG96G1d_dOjbbFl4jWWpKqw7n9E0kZIDp3JQLzaqdrX3Dm3WuGKpXJ9BlK0nW3M72SCfbXu7fIlmp_5sNAiXG8Hrov0eauesaverKmuM_c_-4_kXvvOC_A</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Li, Shan</creator><creator>Song, Yongfeng</creator><creator>Li, Xiongbing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202212</creationdate><title>Attenuation and dispersion of leaky Rayleigh wave in polycrystals</title><author>Li, Shan ; Song, Yongfeng ; Li, Xiongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2a63ac96e8e28632ebc1ffb6f22f1fd3bd3f8e9ff4d23d59cf147aa87b7514b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Song, Yongfeng</creatorcontrib><creatorcontrib>Li, Xiongbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shan</au><au>Song, Yongfeng</au><au>Li, Xiongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attenuation and dispersion of leaky Rayleigh wave in polycrystals</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2022-12</date><risdate>2022</risdate><volume>152</volume><issue>6</issue><spage>3271</spage><epage>3280</epage><pages>3271-3280</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In this work, we use the characteristic equation of leaky Rayleigh waves (LRWs) and a unified approach of bulk waves proposed by Stanke and Kino [J. Acoust. Soc. Am. 75, 665–681 (1984)] to calculate the attenuation and velocity dispersion of LRWs in polycrystals. Numerical results demonstrate that the total attenuation including the leakage attenuation and scattering attenuation is proportional to frequency and independent of grain size in the Rayleigh scattering regime. Meanwhile, the variation of phase velocity in all scattering regimes remains at ∼0.7% according to the theoretical expectation; this means that the velocity dispersion of the LRWs can be ignored, consistent with the conventional viewpoint. Measurements are conducted on stainless steel at different ultrasonic frequencies (all in the Rayleigh scattering regime). The non-paraxial sound field model is used here to eliminate the diffraction loss and to obtain the total attenuation. Experimental results verify that LRWs have very little velocity dispersion. Meanwhile, experimental fitting data reveal that the modified theoretical model can be used to evaluate the total attenuation (only ∼2% discrepancies) of LRWs under the consideration of the diffraction effect. The relative errors between experimental scattering attenuation and theoretical value ranged from 11% to 18%, mainly owing to the effect of surface roughness and measurement inaccuracy.</abstract><cop>United States</cop><pmid>36586881</pmid><doi>10.1121/10.0016361</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2022-12, Vol.152 (6), p.3271-3280
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmed_primary_36586881
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Attenuation and dispersion of leaky Rayleigh wave in polycrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attenuation%20and%20dispersion%20of%20leaky%20Rayleigh%20wave%20in%20polycrystals&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Li,%20Shan&rft.date=2022-12&rft.volume=152&rft.issue=6&rft.spage=3271&rft.epage=3280&rft.pages=3271-3280&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0016361&rft_dat=%3Cproquest_pubme%3E2759961629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759961629&rft_id=info:pmid/36586881&rfr_iscdi=true