Redox-active polyimides for energy conversion and storage: from synthesis to application
As the demand for next-generation electronics is increasing, organic and polymer-based semiconductors are in the spotlight as suitable materials owing to their tailorable structures along with flexible properties. Especially, polyimide (PI) has been widely utilised in electronics because of its outs...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2022-12, Vol.59 (2), p.153-169 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the demand for next-generation electronics is increasing, organic and polymer-based semiconductors are in the spotlight as suitable materials owing to their tailorable structures along with flexible properties. Especially, polyimide (PI) has been widely utilised in electronics because of its outstanding mechanical and thermal properties and chemical resistance originating from its crystallinity, conjugated structure and π-π interactions. PI has recently been receiving more attention in the energy storage and conversion fields due to its unique redox activity and charge transfer complex structure. In this review, we focus on the design of PI structures with improved electrochemical and photocatalytic activities for use as redox-active materials in photo- and electrocatalysts, batteries and supercapacitors. We anticipate that this review will offer insight into the utilisation of redox-active PI-based polymeric materials for the development of future electronics.
This review covers redox-active polyimides in energy conversion and storage applications along with the recent progress in the synthetic methods and topological control used to produce polyimides. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d2cc05660g |