Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis

Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-02, Vol.42 (2), p.1-1
Hauptverfasser: Gaggion, Nicolas, Mansilla, Lucas, Mosquera, Candelaria, Milone, Diego H., Ferrante, Enzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 42
creator Gaggion, Nicolas
Mansilla, Lucas
Mosquera, Candelaria
Milone, Diego H.
Ferrante, Enzo
description Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.
doi_str_mv 10.1109/TMI.2022.3224660
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36423313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9963582</ieee_id><sourcerecordid>2740514336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhjoSELHHhkq3t8UfCDVV8rNSqlyJxixxnsuuSL-ykkD_A767DLj1wGsnzvON35iXkNWdbzllxcXu92womxBaEkFqzJ2TDlcozoeT3p2TDhMkzxrQ4Iy9ivGOMS8WK5-QMtBQAHDbkz64bw3Dv-z21vZ2Gzjvb0rG1c_SVb_20UN_TDuu_776ze6QR9x32k5380NN7b-lhqYKv6T7Y8UB7nENCe5x-DeFH_EDtOLZJvdKRTgN1B4wT_Z0Fu6x_tkv08SV51tg24qtTPSffPn-6vfyaXd182V1-vMocSDNlhbMCi5xJJSt0tuFOi5qjaYyDmhltTV3lPM8FWF4bBeigQtBcmUahdDmck_fHuWnpn3PyUXY-Omxb2-Mwx1IYyRSXADqh7_5D74Y5JL8rZSBZkBoSxY6UC0OMAZtyDOlKYSk5K9eMypRRuWZUnjJKkrenwXOVDvso-BdKAt4cAY-Ij-2i0KDSZg_ZS5fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454463</pqid></control><display><type>article</type><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</creator><creatorcontrib>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</creatorcontrib><description>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3224660</identifier><identifier>PMID: 36423313</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>anatomically plausible segmentation ; Artificial neural networks ; Chest ; Coders ; Domains ; Encoders-Decoders ; Entropy ; Graph convolutional neural networks ; graph generative models ; Graph neural networks ; Graph representations ; Graphical representations ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; landmark based segmentation ; localized skip connections ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Occlusion ; Pixels ; Radiography ; Thorax - diagnostic imaging ; X ray analysis ; X-Rays</subject><ispartof>IEEE transactions on medical imaging, 2023-02, Vol.42 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</citedby><cites>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</cites><orcidid>0000-0002-6684-5300 ; 0000-0002-8500-788X ; 0000-0003-2182-4351 ; 0000-0001-9820-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9963582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9963582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36423313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaggion, Nicolas</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Mosquera, Candelaria</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</description><subject>anatomically plausible segmentation</subject><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Coders</subject><subject>Domains</subject><subject>Encoders-Decoders</subject><subject>Entropy</subject><subject>Graph convolutional neural networks</subject><subject>graph generative models</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>landmark based segmentation</subject><subject>localized skip connections</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Occlusion</subject><subject>Pixels</subject><subject>Radiography</subject><subject>Thorax - diagnostic imaging</subject><subject>X ray analysis</subject><subject>X-Rays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhjoSELHHhkq3t8UfCDVV8rNSqlyJxixxnsuuSL-ykkD_A767DLj1wGsnzvON35iXkNWdbzllxcXu92womxBaEkFqzJ2TDlcozoeT3p2TDhMkzxrQ4Iy9ivGOMS8WK5-QMtBQAHDbkz64bw3Dv-z21vZ2Gzjvb0rG1c_SVb_20UN_TDuu_776ze6QR9x32k5380NN7b-lhqYKv6T7Y8UB7nENCe5x-DeFH_EDtOLZJvdKRTgN1B4wT_Z0Fu6x_tkv08SV51tg24qtTPSffPn-6vfyaXd182V1-vMocSDNlhbMCi5xJJSt0tuFOi5qjaYyDmhltTV3lPM8FWF4bBeigQtBcmUahdDmck_fHuWnpn3PyUXY-Omxb2-Mwx1IYyRSXADqh7_5D74Y5JL8rZSBZkBoSxY6UC0OMAZtyDOlKYSk5K9eMypRRuWZUnjJKkrenwXOVDvso-BdKAt4cAY-Ij-2i0KDSZg_ZS5fu</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gaggion, Nicolas</creator><creator>Mansilla, Lucas</creator><creator>Mosquera, Candelaria</creator><creator>Milone, Diego H.</creator><creator>Ferrante, Enzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6684-5300</orcidid><orcidid>https://orcid.org/0000-0002-8500-788X</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0001-9820-9336</orcidid></search><sort><creationdate>20230201</creationdate><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><author>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anatomically plausible segmentation</topic><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Coders</topic><topic>Domains</topic><topic>Encoders-Decoders</topic><topic>Entropy</topic><topic>Graph convolutional neural networks</topic><topic>graph generative models</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>landmark based segmentation</topic><topic>localized skip connections</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Occlusion</topic><topic>Pixels</topic><topic>Radiography</topic><topic>Thorax - diagnostic imaging</topic><topic>X ray analysis</topic><topic>X-Rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaggion, Nicolas</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Mosquera, Candelaria</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaggion, Nicolas</au><au>Mansilla, Lucas</au><au>Mosquera, Candelaria</au><au>Milone, Diego H.</au><au>Ferrante, Enzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36423313</pmid><doi>10.1109/TMI.2022.3224660</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6684-5300</orcidid><orcidid>https://orcid.org/0000-0002-8500-788X</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0001-9820-9336</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-02, Vol.42 (2), p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_36423313
source IEEE Electronic Library (IEL)
subjects anatomically plausible segmentation
Artificial neural networks
Chest
Coders
Domains
Encoders-Decoders
Entropy
Graph convolutional neural networks
graph generative models
Graph neural networks
Graph representations
Graphical representations
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
landmark based segmentation
localized skip connections
Medical imaging
Neural networks
Neural Networks, Computer
Occlusion
Pixels
Radiography
Thorax - diagnostic imaging
X ray analysis
X-Rays
title Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20anatomical%20plausibility%20in%20medical%20image%20segmentation%20via%20hybrid%20graph%20neural%20networks:%20applications%20to%20chest%20x-ray%20analysis&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Gaggion,%20Nicolas&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3224660&rft_dat=%3Cproquest_RIE%3E2740514336%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454463&rft_id=info:pmid/36423313&rft_ieee_id=9963582&rfr_iscdi=true