Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis
Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2023-02, Vol.42 (2), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | 42 |
creator | Gaggion, Nicolas Mansilla, Lucas Mosquera, Candelaria Milone, Diego H. Ferrante, Enzo |
description | Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail. |
doi_str_mv | 10.1109/TMI.2022.3224660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36423313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9963582</ieee_id><sourcerecordid>2740514336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhjoSELHHhkq3t8UfCDVV8rNSqlyJxixxnsuuSL-ykkD_A767DLj1wGsnzvON35iXkNWdbzllxcXu92womxBaEkFqzJ2TDlcozoeT3p2TDhMkzxrQ4Iy9ivGOMS8WK5-QMtBQAHDbkz64bw3Dv-z21vZ2Gzjvb0rG1c_SVb_20UN_TDuu_776ze6QR9x32k5380NN7b-lhqYKv6T7Y8UB7nENCe5x-DeFH_EDtOLZJvdKRTgN1B4wT_Z0Fu6x_tkv08SV51tg24qtTPSffPn-6vfyaXd182V1-vMocSDNlhbMCi5xJJSt0tuFOi5qjaYyDmhltTV3lPM8FWF4bBeigQtBcmUahdDmck_fHuWnpn3PyUXY-Omxb2-Mwx1IYyRSXADqh7_5D74Y5JL8rZSBZkBoSxY6UC0OMAZtyDOlKYSk5K9eMypRRuWZUnjJKkrenwXOVDvso-BdKAt4cAY-Ij-2i0KDSZg_ZS5fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454463</pqid></control><display><type>article</type><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</creator><creatorcontrib>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</creatorcontrib><description>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3224660</identifier><identifier>PMID: 36423313</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>anatomically plausible segmentation ; Artificial neural networks ; Chest ; Coders ; Domains ; Encoders-Decoders ; Entropy ; Graph convolutional neural networks ; graph generative models ; Graph neural networks ; Graph representations ; Graphical representations ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; landmark based segmentation ; localized skip connections ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Occlusion ; Pixels ; Radiography ; Thorax - diagnostic imaging ; X ray analysis ; X-Rays</subject><ispartof>IEEE transactions on medical imaging, 2023-02, Vol.42 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</citedby><cites>FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</cites><orcidid>0000-0002-6684-5300 ; 0000-0002-8500-788X ; 0000-0003-2182-4351 ; 0000-0001-9820-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9963582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9963582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36423313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaggion, Nicolas</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Mosquera, Candelaria</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</description><subject>anatomically plausible segmentation</subject><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Coders</subject><subject>Domains</subject><subject>Encoders-Decoders</subject><subject>Entropy</subject><subject>Graph convolutional neural networks</subject><subject>graph generative models</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>landmark based segmentation</subject><subject>localized skip connections</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Occlusion</subject><subject>Pixels</subject><subject>Radiography</subject><subject>Thorax - diagnostic imaging</subject><subject>X ray analysis</subject><subject>X-Rays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhjoSELHHhkq3t8UfCDVV8rNSqlyJxixxnsuuSL-ykkD_A767DLj1wGsnzvON35iXkNWdbzllxcXu92womxBaEkFqzJ2TDlcozoeT3p2TDhMkzxrQ4Iy9ivGOMS8WK5-QMtBQAHDbkz64bw3Dv-z21vZ2Gzjvb0rG1c_SVb_20UN_TDuu_776ze6QR9x32k5380NN7b-lhqYKv6T7Y8UB7nENCe5x-DeFH_EDtOLZJvdKRTgN1B4wT_Z0Fu6x_tkv08SV51tg24qtTPSffPn-6vfyaXd182V1-vMocSDNlhbMCi5xJJSt0tuFOi5qjaYyDmhltTV3lPM8FWF4bBeigQtBcmUahdDmck_fHuWnpn3PyUXY-Omxb2-Mwx1IYyRSXADqh7_5D74Y5JL8rZSBZkBoSxY6UC0OMAZtyDOlKYSk5K9eMypRRuWZUnjJKkrenwXOVDvso-BdKAt4cAY-Ij-2i0KDSZg_ZS5fu</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gaggion, Nicolas</creator><creator>Mansilla, Lucas</creator><creator>Mosquera, Candelaria</creator><creator>Milone, Diego H.</creator><creator>Ferrante, Enzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6684-5300</orcidid><orcidid>https://orcid.org/0000-0002-8500-788X</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0001-9820-9336</orcidid></search><sort><creationdate>20230201</creationdate><title>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</title><author>Gaggion, Nicolas ; Mansilla, Lucas ; Mosquera, Candelaria ; Milone, Diego H. ; Ferrante, Enzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9ca2e980454becaf1c62d1e7f7c3d076a7db818823a1d753ec3be36157f5e4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anatomically plausible segmentation</topic><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Coders</topic><topic>Domains</topic><topic>Encoders-Decoders</topic><topic>Entropy</topic><topic>Graph convolutional neural networks</topic><topic>graph generative models</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>landmark based segmentation</topic><topic>localized skip connections</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Occlusion</topic><topic>Pixels</topic><topic>Radiography</topic><topic>Thorax - diagnostic imaging</topic><topic>X ray analysis</topic><topic>X-Rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaggion, Nicolas</creatorcontrib><creatorcontrib>Mansilla, Lucas</creatorcontrib><creatorcontrib>Mosquera, Candelaria</creatorcontrib><creatorcontrib>Milone, Diego H.</creatorcontrib><creatorcontrib>Ferrante, Enzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaggion, Nicolas</au><au>Mansilla, Lucas</au><au>Mosquera, Candelaria</au><au>Milone, Diego H.</au><au>Ferrante, Enzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36423313</pmid><doi>10.1109/TMI.2022.3224660</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6684-5300</orcidid><orcidid>https://orcid.org/0000-0002-8500-788X</orcidid><orcidid>https://orcid.org/0000-0003-2182-4351</orcidid><orcidid>https://orcid.org/0000-0001-9820-9336</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2023-02, Vol.42 (2), p.1-1 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_36423313 |
source | IEEE Electronic Library (IEL) |
subjects | anatomically plausible segmentation Artificial neural networks Chest Coders Domains Encoders-Decoders Entropy Graph convolutional neural networks graph generative models Graph neural networks Graph representations Graphical representations Image processing Image Processing, Computer-Assisted - methods Image segmentation landmark based segmentation localized skip connections Medical imaging Neural networks Neural Networks, Computer Occlusion Pixels Radiography Thorax - diagnostic imaging X ray analysis X-Rays |
title | Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20anatomical%20plausibility%20in%20medical%20image%20segmentation%20via%20hybrid%20graph%20neural%20networks:%20applications%20to%20chest%20x-ray%20analysis&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Gaggion,%20Nicolas&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3224660&rft_dat=%3Cproquest_RIE%3E2740514336%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773454463&rft_id=info:pmid/36423313&rft_ieee_id=9963582&rfr_iscdi=true |