Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition
In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-06, Vol.45 (6), p.7559-7576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7576 |
---|---|
container_issue | 6 |
container_start_page | 7559 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Shu, Xiangbo Xu, Binqian Zhang, Liyan Tang, Jinhui |
description | In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks. |
doi_str_mv | 10.1109/TPAMI.2022.3222871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36395133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954217</ieee_id><sourcerecordid>2738191352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-49b2b526f97154da0dbfbd63b8f89e03a620717594dde3d704ea4e8cf04303953</originalsourceid><addsrcrecordid>eNpdkcFuGyEQhlGVqnHTvkAjRSv10gsuMMsuHB2rTSM5ahWnZ8TuzqYka3CAtZS37zp2c-iJQXz_DKOPkE-czTln-uvdr8XN9VwwIeYghFA1f0NmXIOmIEGfkBnjlaBKCXVK3qf0wBgvJYN35BQq0JIDzEi8GYfs6FW0fhxsdPm5WPj2T4h0GXyONmW3w-IWtxET-myzC75YoY3e-fuiD7FY48bR9bjFuHMJu2L9iAPm4Oml3V8X7UvkFttw792-_kDe9nZI-PF4npHf37_dLX_Q1c-r6-ViRVuQPNNSN6KRoup1zWXZWdY1fdNV0KheaWRgK8FqXktddh1CV7MSbYmq7VkJbFoPzsiXQ99tDE8jpmw2LrU4DNZjGJMRNSiuOUgxoZ__Qx_CGP30OyMU00qpacxEiQPVxpBSxN5so9vY-Gw4M3sj5sWI2RsxRyNT6OLYemw22L1G_imYgPMD4BDx9VlrWQpew19r8pCr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809888594</pqid></control><display><type>article</type><title>Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Xiangbo ; Xu, Binqian ; Zhang, Liyan ; Tang, Jinhui</creator><creatorcontrib>Shu, Xiangbo ; Xu, Binqian ; Zhang, Liyan ; Tang, Jinhui</creatorcontrib><description>In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3222871</identifier><identifier>PMID: 36395133</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action recognition ; Activity recognition ; anchor graph ; contrastive learning ; Data augmentation ; Data models ; Joints ; Loss measurement ; Machine learning ; Outliers (statistics) ; Pattern recognition ; Representations ; Semantics ; semi-supervised ; Skeleton ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7559-7576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-49b2b526f97154da0dbfbd63b8f89e03a620717594dde3d704ea4e8cf04303953</citedby><cites>FETCH-LOGICAL-c351t-49b2b526f97154da0dbfbd63b8f89e03a620717594dde3d704ea4e8cf04303953</cites><orcidid>0000-0003-4902-4663 ; 0000-0001-9008-222X ; 0000-0002-1549-3317 ; 0000-0003-3904-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36395133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Xiangbo</creatorcontrib><creatorcontrib>Xu, Binqian</creatorcontrib><creatorcontrib>Zhang, Liyan</creatorcontrib><creatorcontrib>Tang, Jinhui</creatorcontrib><title>Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks.</description><subject>Action recognition</subject><subject>Activity recognition</subject><subject>anchor graph</subject><subject>contrastive learning</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Joints</subject><subject>Loss measurement</subject><subject>Machine learning</subject><subject>Outliers (statistics)</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Semantics</subject><subject>semi-supervised</subject><subject>Skeleton</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuGyEQhlGVqnHTvkAjRSv10gsuMMsuHB2rTSM5ahWnZ8TuzqYka3CAtZS37zp2c-iJQXz_DKOPkE-czTln-uvdr8XN9VwwIeYghFA1f0NmXIOmIEGfkBnjlaBKCXVK3qf0wBgvJYN35BQq0JIDzEi8GYfs6FW0fhxsdPm5WPj2T4h0GXyONmW3w-IWtxET-myzC75YoY3e-fuiD7FY48bR9bjFuHMJu2L9iAPm4Oml3V8X7UvkFttw792-_kDe9nZI-PF4npHf37_dLX_Q1c-r6-ViRVuQPNNSN6KRoup1zWXZWdY1fdNV0KheaWRgK8FqXktddh1CV7MSbYmq7VkJbFoPzsiXQ99tDE8jpmw2LrU4DNZjGJMRNSiuOUgxoZ__Qx_CGP30OyMU00qpacxEiQPVxpBSxN5so9vY-Gw4M3sj5sWI2RsxRyNT6OLYemw22L1G_imYgPMD4BDx9VlrWQpew19r8pCr</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Shu, Xiangbo</creator><creator>Xu, Binqian</creator><creator>Zhang, Liyan</creator><creator>Tang, Jinhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4902-4663</orcidid><orcidid>https://orcid.org/0000-0001-9008-222X</orcidid><orcidid>https://orcid.org/0000-0002-1549-3317</orcidid><orcidid>https://orcid.org/0000-0003-3904-1400</orcidid></search><sort><creationdate>20230601</creationdate><title>Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition</title><author>Shu, Xiangbo ; Xu, Binqian ; Zhang, Liyan ; Tang, Jinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-49b2b526f97154da0dbfbd63b8f89e03a620717594dde3d704ea4e8cf04303953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Action recognition</topic><topic>Activity recognition</topic><topic>anchor graph</topic><topic>contrastive learning</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Joints</topic><topic>Loss measurement</topic><topic>Machine learning</topic><topic>Outliers (statistics)</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Semantics</topic><topic>semi-supervised</topic><topic>Skeleton</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Xiangbo</creatorcontrib><creatorcontrib>Xu, Binqian</creatorcontrib><creatorcontrib>Zhang, Liyan</creatorcontrib><creatorcontrib>Tang, Jinhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Xiangbo</au><au>Xu, Binqian</au><au>Zhang, Liyan</au><au>Tang, Jinhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>45</volume><issue>6</issue><spage>7559</spage><epage>7576</epage><pages>7559-7576</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36395133</pmid><doi>10.1109/TPAMI.2022.3222871</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4902-4663</orcidid><orcidid>https://orcid.org/0000-0001-9008-222X</orcidid><orcidid>https://orcid.org/0000-0002-1549-3317</orcidid><orcidid>https://orcid.org/0000-0003-3904-1400</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-06, Vol.45 (6), p.7559-7576 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_36395133 |
source | IEEE Electronic Library (IEL) |
subjects | Action recognition Activity recognition anchor graph contrastive learning Data augmentation Data models Joints Loss measurement Machine learning Outliers (statistics) Pattern recognition Representations Semantics semi-supervised Skeleton Task analysis |
title | Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Granularity%20Anchor-Contrastive%20Representation%20Learning%20for%20Semi-Supervised%20Skeleton-Based%20Action%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Shu,%20Xiangbo&rft.date=2023-06-01&rft.volume=45&rft.issue=6&rft.spage=7559&rft.epage=7576&rft.pages=7559-7576&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3222871&rft_dat=%3Cproquest_RIE%3E2738191352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809888594&rft_id=info:pmid/36395133&rft_ieee_id=9954217&rfr_iscdi=true |