Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment

Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Emerging microbes & infections 2023-12, Vol.12 (1), p.e2146536
Hauptverfasser: Farman, Mariam R., Petráčková, Denisa, Kumar, Dilip, Držmíšek, Jakub, Saha, Argha, Čurnová, Ivana, Čapek, Jan, Hejnarová, Václava, Amman, Fabian, Hofacker, Ivo, Večerek, Branislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e2146536
container_title Emerging microbes & infections
container_volume 12
creator Farman, Mariam R.
Petráčková, Denisa
Kumar, Dilip
Držmíšek, Jakub
Saha, Argha
Čurnová, Ivana
Čapek, Jan
Hejnarová, Václava
Amman, Fabian
Hofacker, Ivo
Večerek, Branislav
description Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg − phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg − phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg − mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.
doi_str_mv 10.1080/22221751.2022.2146536
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36357372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_821ce2959aed4031b8fc2ce8f67adc55</doaj_id><sourcerecordid>2867486549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-2907f5d8a133cd406bacd94536941ebf972d4eeb583f351d4f69c5fd601dee9d3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpTwBF4rxbf8e5IEoFpVIlLnC2HHu861ViB9tbtP8eh91W7YW52Jp5_cyM36Z5j9EaI4muSA3ccbwmiJA1wUxwKl4150t-tRReP7ufNZc571CNDgmG2dvmjArKO9qR80ZdP_i0HyGUdt5CiOUwQzunOMUCuf0Sk4UC46jbGVLZ5-xzq62eiy4-hrbEtmyh9aEkPWmT4rzVG2ghVGgMU6W-a944PWa4PJ0Xza9vX3_efF_d_7i9u7m-XxkuSFmRHnWOW6kxpcYyJAZtbM_qVj3DMLi-I5YBDFxSRzm2zInecGcFwhagt_SiuTtybdQ7NSc_6XRQUXv1LxHTRulUvBlBSYINkJ73GmonigfpDDEgnei0NZxX1qcja94PE1gDy3rjC-jLSvBbtYkPqpdc1pEr4OMJkOLvPeSidnGfQt1fESk6JgVnfVXxo6r-W84J3FMHjNRis3q0WS02q5PN9d2H5-M9vXo0tQo-HwU-uJgm_Sem0aqiD2NMLulgfFb0_z3-AhCMuhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867486549</pqid></control><display><type>article</type><title>Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Farman, Mariam R. ; Petráčková, Denisa ; Kumar, Dilip ; Držmíšek, Jakub ; Saha, Argha ; Čurnová, Ivana ; Čapek, Jan ; Hejnarová, Václava ; Amman, Fabian ; Hofacker, Ivo ; Večerek, Branislav</creator><creatorcontrib>Farman, Mariam R. ; Petráčková, Denisa ; Kumar, Dilip ; Držmíšek, Jakub ; Saha, Argha ; Čurnová, Ivana ; Čapek, Jan ; Hejnarová, Václava ; Amman, Fabian ; Hofacker, Ivo ; Večerek, Branislav</creatorcontrib><description>Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg − phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg − phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg − mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.</description><identifier>ISSN: 2222-1751</identifier><identifier>EISSN: 2222-1751</identifier><identifier>DOI: 10.1080/22221751.2022.2146536</identifier><identifier>PMID: 36357372</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Adaptation ; adaptation to stress ; avirulent phase ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bordetella pertussis ; Bordetella pertussis - metabolism ; BvgAS ; cysteine toxicity ; Gene Expression Regulation, Bacterial ; Humans ; intramacrophage environment ; Macrophages - metabolism ; Metabolism ; Phenotype ; Whooping Cough</subject><ispartof>Emerging microbes &amp; infections, 2023-12, Vol.12 (1), p.e2146536</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd 2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-2907f5d8a133cd406bacd94536941ebf972d4eeb583f351d4f69c5fd601dee9d3</citedby><cites>FETCH-LOGICAL-c562t-2907f5d8a133cd406bacd94536941ebf972d4eeb583f351d4f69c5fd601dee9d3</cites><orcidid>0000-0002-5372-6337 ; 0000-0003-3476-8125 ; 0000-0001-9520-6324 ; 0000-0003-4566-1446 ; 0000-0002-4031-3939 ; 0000-0001-7132-0800 ; 0000-0002-4419-8421 ; 0000-0002-8646-859X ; 0000-0002-6207-2099 ; 0000-0001-5094-6812 ; 0000-0002-8585-3189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36357372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farman, Mariam R.</creatorcontrib><creatorcontrib>Petráčková, Denisa</creatorcontrib><creatorcontrib>Kumar, Dilip</creatorcontrib><creatorcontrib>Držmíšek, Jakub</creatorcontrib><creatorcontrib>Saha, Argha</creatorcontrib><creatorcontrib>Čurnová, Ivana</creatorcontrib><creatorcontrib>Čapek, Jan</creatorcontrib><creatorcontrib>Hejnarová, Václava</creatorcontrib><creatorcontrib>Amman, Fabian</creatorcontrib><creatorcontrib>Hofacker, Ivo</creatorcontrib><creatorcontrib>Večerek, Branislav</creatorcontrib><title>Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment</title><title>Emerging microbes &amp; infections</title><addtitle>Emerg Microbes Infect</addtitle><description>Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg − phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg − phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg − mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.</description><subject>Adaptation</subject><subject>adaptation to stress</subject><subject>avirulent phase</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bordetella pertussis</subject><subject>Bordetella pertussis - metabolism</subject><subject>BvgAS</subject><subject>cysteine toxicity</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Humans</subject><subject>intramacrophage environment</subject><subject>Macrophages - metabolism</subject><subject>Metabolism</subject><subject>Phenotype</subject><subject>Whooping Cough</subject><issn>2222-1751</issn><issn>2222-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpTwBF4rxbf8e5IEoFpVIlLnC2HHu861ViB9tbtP8eh91W7YW52Jp5_cyM36Z5j9EaI4muSA3ccbwmiJA1wUxwKl4150t-tRReP7ufNZc571CNDgmG2dvmjArKO9qR80ZdP_i0HyGUdt5CiOUwQzunOMUCuf0Sk4UC46jbGVLZ5-xzq62eiy4-hrbEtmyh9aEkPWmT4rzVG2ghVGgMU6W-a944PWa4PJ0Xza9vX3_efF_d_7i9u7m-XxkuSFmRHnWOW6kxpcYyJAZtbM_qVj3DMLi-I5YBDFxSRzm2zInecGcFwhagt_SiuTtybdQ7NSc_6XRQUXv1LxHTRulUvBlBSYINkJ73GmonigfpDDEgnei0NZxX1qcja94PE1gDy3rjC-jLSvBbtYkPqpdc1pEr4OMJkOLvPeSidnGfQt1fESk6JgVnfVXxo6r-W84J3FMHjNRis3q0WS02q5PN9d2H5-M9vXo0tQo-HwU-uJgm_Sem0aqiD2NMLulgfFb0_z3-AhCMuhQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Farman, Mariam R.</creator><creator>Petráčková, Denisa</creator><creator>Kumar, Dilip</creator><creator>Držmíšek, Jakub</creator><creator>Saha, Argha</creator><creator>Čurnová, Ivana</creator><creator>Čapek, Jan</creator><creator>Hejnarová, Václava</creator><creator>Amman, Fabian</creator><creator>Hofacker, Ivo</creator><creator>Večerek, Branislav</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5372-6337</orcidid><orcidid>https://orcid.org/0000-0003-3476-8125</orcidid><orcidid>https://orcid.org/0000-0001-9520-6324</orcidid><orcidid>https://orcid.org/0000-0003-4566-1446</orcidid><orcidid>https://orcid.org/0000-0002-4031-3939</orcidid><orcidid>https://orcid.org/0000-0001-7132-0800</orcidid><orcidid>https://orcid.org/0000-0002-4419-8421</orcidid><orcidid>https://orcid.org/0000-0002-8646-859X</orcidid><orcidid>https://orcid.org/0000-0002-6207-2099</orcidid><orcidid>https://orcid.org/0000-0001-5094-6812</orcidid><orcidid>https://orcid.org/0000-0002-8585-3189</orcidid></search><sort><creationdate>202312</creationdate><title>Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment</title><author>Farman, Mariam R. ; Petráčková, Denisa ; Kumar, Dilip ; Držmíšek, Jakub ; Saha, Argha ; Čurnová, Ivana ; Čapek, Jan ; Hejnarová, Václava ; Amman, Fabian ; Hofacker, Ivo ; Večerek, Branislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-2907f5d8a133cd406bacd94536941ebf972d4eeb583f351d4f69c5fd601dee9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>adaptation to stress</topic><topic>avirulent phase</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bordetella pertussis</topic><topic>Bordetella pertussis - metabolism</topic><topic>BvgAS</topic><topic>cysteine toxicity</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Humans</topic><topic>intramacrophage environment</topic><topic>Macrophages - metabolism</topic><topic>Metabolism</topic><topic>Phenotype</topic><topic>Whooping Cough</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farman, Mariam R.</creatorcontrib><creatorcontrib>Petráčková, Denisa</creatorcontrib><creatorcontrib>Kumar, Dilip</creatorcontrib><creatorcontrib>Držmíšek, Jakub</creatorcontrib><creatorcontrib>Saha, Argha</creatorcontrib><creatorcontrib>Čurnová, Ivana</creatorcontrib><creatorcontrib>Čapek, Jan</creatorcontrib><creatorcontrib>Hejnarová, Václava</creatorcontrib><creatorcontrib>Amman, Fabian</creatorcontrib><creatorcontrib>Hofacker, Ivo</creatorcontrib><creatorcontrib>Večerek, Branislav</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Emerging microbes &amp; infections</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farman, Mariam R.</au><au>Petráčková, Denisa</au><au>Kumar, Dilip</au><au>Držmíšek, Jakub</au><au>Saha, Argha</au><au>Čurnová, Ivana</au><au>Čapek, Jan</au><au>Hejnarová, Václava</au><au>Amman, Fabian</au><au>Hofacker, Ivo</au><au>Večerek, Branislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment</atitle><jtitle>Emerging microbes &amp; infections</jtitle><addtitle>Emerg Microbes Infect</addtitle><date>2023-12</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>e2146536</spage><pages>e2146536-</pages><issn>2222-1751</issn><eissn>2222-1751</eissn><abstract>Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg − phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg − phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg − mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>36357372</pmid><doi>10.1080/22221751.2022.2146536</doi><orcidid>https://orcid.org/0000-0002-5372-6337</orcidid><orcidid>https://orcid.org/0000-0003-3476-8125</orcidid><orcidid>https://orcid.org/0000-0001-9520-6324</orcidid><orcidid>https://orcid.org/0000-0003-4566-1446</orcidid><orcidid>https://orcid.org/0000-0002-4031-3939</orcidid><orcidid>https://orcid.org/0000-0001-7132-0800</orcidid><orcidid>https://orcid.org/0000-0002-4419-8421</orcidid><orcidid>https://orcid.org/0000-0002-8646-859X</orcidid><orcidid>https://orcid.org/0000-0002-6207-2099</orcidid><orcidid>https://orcid.org/0000-0001-5094-6812</orcidid><orcidid>https://orcid.org/0000-0002-8585-3189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2222-1751
ispartof Emerging microbes & infections, 2023-12, Vol.12 (1), p.e2146536
issn 2222-1751
2222-1751
language eng
recordid cdi_pubmed_primary_36357372
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptation
adaptation to stress
avirulent phase
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bordetella pertussis
Bordetella pertussis - metabolism
BvgAS
cysteine toxicity
Gene Expression Regulation, Bacterial
Humans
intramacrophage environment
Macrophages - metabolism
Metabolism
Phenotype
Whooping Cough
title Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avirulent%20phenotype%20promotes%20Bordetella%20pertussis%20adaptation%20to%20the%20intramacrophage%20environment&rft.jtitle=Emerging%20microbes%20&%20infections&rft.au=Farman,%20Mariam%20R.&rft.date=2023-12&rft.volume=12&rft.issue=1&rft.spage=e2146536&rft.pages=e2146536-&rft.issn=2222-1751&rft.eissn=2222-1751&rft_id=info:doi/10.1080/22221751.2022.2146536&rft_dat=%3Cproquest_pubme%3E2867486549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867486549&rft_id=info:pmid/36357372&rft_doaj_id=oai_doaj_org_article_821ce2959aed4031b8fc2ce8f67adc55&rfr_iscdi=true