Bayesian Inferences on Neural Activity in EEG-Based Brain-Computer Interface
A brain-computer interface (BCI) is a system that translates brain activity into commands to operate technology. A common design for an electroencephalogram (EEG) BCI relies on the classification of the P300 event-related potential (ERP), which is a response elicited by the rare occurrence of target...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2022, Vol.117 (539), p.1122-1133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A brain-computer interface (BCI) is a system that translates brain activity into commands to operate technology. A common design for an electroencephalogram (EEG) BCI relies on the classification of the P300 event-related potential (ERP), which is a response elicited by the rare occurrence of target stimuli among common nontarget stimuli. Few existing ERP classifiers directly explore the underlying mechanism of the neural activity. To this end, we perform a novel Bayesian analysis of the probability distribution of multi-channel real EEG signals under the P300 ERP-BCI design. We aim to identify relevant spatial temporal differences of the neural activity, which provides statistical evidence of P300 ERP responses and helps design individually efficient and accurate BCIs. As one key finding of our single participant analysis, there is a 90% posterior probability that the target ERPs of the channels around visual cortex reach their negative peaks around 200 milliseconds poststimulus. Our analysis identifies five important channels (PO7, PO8, Oz, P4, Cz) for the BCI speller leading to a 100% prediction accuracy. From the analyses of nine other participants, we consistently select the identified five channels, and the selection frequencies are robust to small variations of bandpass filters and kernel hyper parameters.
Supplementary materials
for this article are available online. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2022.2041422 |