Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents
Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coh...
Gespeichert in:
Veröffentlicht in: | Journal of imaging 2022-10, Vol.8 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of imaging |
container_volume | 8 |
creator | Büttner, Jochen Martinetz, Julius El-Hajj, Hassan Valleriani, Matteo |
description | Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus on Optical Character Recognition to support the analysis of historical documents. In this paper, we highlight the importance of visual elements, in particular illustrations in historical documents, and offer a public multi-class historical visual element dataset based on the
corpus. Additionally, we train an image extraction model based on YOLO architecture and publish it through a publicly available web-service to detect and extract multi-class images from historical documents in an effort to bridge the gap between traditional and computational approaches in historical studies. |
doi_str_mv | 10.3390/jimaging8100285 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_36286379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36286379</sourcerecordid><originalsourceid>FETCH-pubmed_primary_362863793</originalsourceid><addsrcrecordid>eNqFjr0KwjAURoMgVtTZTe4LVNNef1pXW-muiE4S41UjbVKSdPDtLaKzw8cHhzMcxsYRnyKmfPZUlbgrfU8izuNk0WH9GCMM54jHgI2ce3LOozRul_ZYgMs4WeIq7bPTxljIiGoQ-gr-QbAT0pqLcdJAJrxw5Net4El6ZTSYGxyUa0QJeUkVae9AaSiU88Yq2eLMyObDh6x7E6Wj0fcHbLLN95sirJtLRddzbdtk-zr_WvCv8AbZTkYg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Büttner, Jochen ; Martinetz, Julius ; El-Hajj, Hassan ; Valleriani, Matteo</creator><creatorcontrib>Büttner, Jochen ; Martinetz, Julius ; El-Hajj, Hassan ; Valleriani, Matteo</creatorcontrib><description>Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus on Optical Character Recognition to support the analysis of historical documents. In this paper, we highlight the importance of visual elements, in particular illustrations in historical documents, and offer a public multi-class historical visual element dataset based on the
corpus. Additionally, we train an image extraction model based on YOLO architecture and publish it through a publicly available web-service to detect and extract multi-class images from historical documents in an effort to bridge the gap between traditional and computational approaches in historical studies.</description><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging8100285</identifier><identifier>PMID: 36286379</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Journal of imaging, 2022-10, Vol.8 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8305-7138 ; 0000-0001-6931-7709 ; 0000-0002-0406-7777 ; 0000-0003-1758-3153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36286379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Büttner, Jochen</creatorcontrib><creatorcontrib>Martinetz, Julius</creatorcontrib><creatorcontrib>El-Hajj, Hassan</creatorcontrib><creatorcontrib>Valleriani, Matteo</creatorcontrib><title>Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus on Optical Character Recognition to support the analysis of historical documents. In this paper, we highlight the importance of visual elements, in particular illustrations in historical documents, and offer a public multi-class historical visual element dataset based on the
corpus. Additionally, we train an image extraction model based on YOLO architecture and publish it through a publicly available web-service to detect and extract multi-class images from historical documents in an effort to bridge the gap between traditional and computational approaches in historical studies.</description><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjr0KwjAURoMgVtTZTe4LVNNef1pXW-muiE4S41UjbVKSdPDtLaKzw8cHhzMcxsYRnyKmfPZUlbgrfU8izuNk0WH9GCMM54jHgI2ce3LOozRul_ZYgMs4WeIq7bPTxljIiGoQ-gr-QbAT0pqLcdJAJrxw5Net4El6ZTSYGxyUa0QJeUkVae9AaSiU88Yq2eLMyObDh6x7E6Wj0fcHbLLN95sirJtLRddzbdtk-zr_WvCv8AbZTkYg</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Büttner, Jochen</creator><creator>Martinetz, Julius</creator><creator>El-Hajj, Hassan</creator><creator>Valleriani, Matteo</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-8305-7138</orcidid><orcidid>https://orcid.org/0000-0001-6931-7709</orcidid><orcidid>https://orcid.org/0000-0002-0406-7777</orcidid><orcidid>https://orcid.org/0000-0003-1758-3153</orcidid></search><sort><creationdate>20221015</creationdate><title>Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents</title><author>Büttner, Jochen ; Martinetz, Julius ; El-Hajj, Hassan ; Valleriani, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_362863793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büttner, Jochen</creatorcontrib><creatorcontrib>Martinetz, Julius</creatorcontrib><creatorcontrib>El-Hajj, Hassan</creatorcontrib><creatorcontrib>Valleriani, Matteo</creatorcontrib><collection>PubMed</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büttner, Jochen</au><au>Martinetz, Julius</au><au>El-Hajj, Hassan</au><au>Valleriani, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2022-10-15</date><risdate>2022</risdate><volume>8</volume><issue>10</issue><eissn>2313-433X</eissn><abstract>Recent advances in object detection facilitated by deep learning have led to numerous solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However, historical research is yet to reap the benefits of such advances. This is generally due to the low number of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus on Optical Character Recognition to support the analysis of historical documents. In this paper, we highlight the importance of visual elements, in particular illustrations in historical documents, and offer a public multi-class historical visual element dataset based on the
corpus. Additionally, we train an image extraction model based on YOLO architecture and publish it through a publicly available web-service to detect and extract multi-class images from historical documents in an effort to bridge the gap between traditional and computational approaches in historical studies.</abstract><cop>Switzerland</cop><pmid>36286379</pmid><doi>10.3390/jimaging8100285</doi><orcidid>https://orcid.org/0000-0002-8305-7138</orcidid><orcidid>https://orcid.org/0000-0001-6931-7709</orcidid><orcidid>https://orcid.org/0000-0002-0406-7777</orcidid><orcidid>https://orcid.org/0000-0003-1758-3153</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2313-433X |
ispartof | Journal of imaging, 2022-10, Vol.8 (10) |
issn | 2313-433X |
language | eng |
recordid | cdi_pubmed_primary_36286379 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Cor Deep and the Sacrobosco Dataset: Detection of Visual Elements in Historical Documents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cor%20Deep%20and%20the%20Sacrobosco%20Dataset:%20Detection%20of%20Visual%20Elements%20in%20Historical%20Documents&rft.jtitle=Journal%20of%20imaging&rft.au=B%C3%BCttner,%20Jochen&rft.date=2022-10-15&rft.volume=8&rft.issue=10&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging8100285&rft_dat=%3Cpubmed%3E36286379%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36286379&rfr_iscdi=true |