Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials
. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperfor...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2022-10, Vol.19 (5), p.56049 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56049 |
container_title | Journal of neural engineering |
container_volume | 19 |
creator | Xiao, Xiaolin Xu, Lichao Yue, Jin Pan, Baizhou Xu, Minpeng Ming, Dong |
description | . Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment.
. This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets.
. The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods.
. Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications. |
doi_str_mv | 10.1088/1741-2552/ac9861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36206723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723161662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EouVjZ0IZGQjYTuIkbKiigITEArN1dc7IkNghdgod-N9xVeiCmO7p7r1n-UfICaMXjFbVJStzlvKi4Jeg6kqwHTLdrna3WtAJOfD-ldKMlTXdJ5NMcCpKnk3J19x8YpME7PoWAiYWw4cb3hKwTdKsLHRG_TleJdYtsd16G_TmxfpEuyFq5RpjXxIfEJpV6sM6uDR-hDbBpXuLj_UuoA0GWn9E9nQcePwzD8nz_OZpdpc-PN7ez64fUpVlIqR5UdZa1SVAwZSqFwvFSq1LVha6qKKuc82RqzznoCvIodIKRQ6cIUAliiw7JGeb3n5w7yP6IDvjFbYtWHSjlzyyYIIJwaOVbqxqcN4PqGU_mA6GlWRUrqHLNVW5Jiw30GPk9Kd9XHTYbAO_lKPhfGMwrpevbhxs_Oz_fd-S5o3W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723161662</pqid></control><display><type>article</type><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</creator><creatorcontrib>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</creatorcontrib><description>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment.
. This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets.
. The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods.
. Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac9861</identifier><identifier>PMID: 36206723</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Brain-Computer Interfaces ; deep learning ; EEG ; Electroencephalography - methods ; Evoked Potentials, Visual ; Photic Stimulation - methods ; SSVEP</subject><ispartof>Journal of neural engineering, 2022-10, Vol.19 (5), p.56049</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</citedby><cites>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</cites><orcidid>0000-0002-3516-561X ; 0000-0003-2717-2809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac9861/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36206723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Xiaolin</creatorcontrib><creatorcontrib>Xu, Lichao</creatorcontrib><creatorcontrib>Yue, Jin</creatorcontrib><creatorcontrib>Pan, Baizhou</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment.
. This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets.
. The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods.
. Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</description><subject>Brain-Computer Interfaces</subject><subject>deep learning</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Visual</subject><subject>Photic Stimulation - methods</subject><subject>SSVEP</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1PwzAQxS0EouVjZ0IZGQjYTuIkbKiigITEArN1dc7IkNghdgod-N9xVeiCmO7p7r1n-UfICaMXjFbVJStzlvKi4Jeg6kqwHTLdrna3WtAJOfD-ldKMlTXdJ5NMcCpKnk3J19x8YpME7PoWAiYWw4cb3hKwTdKsLHRG_TleJdYtsd16G_TmxfpEuyFq5RpjXxIfEJpV6sM6uDR-hDbBpXuLj_UuoA0GWn9E9nQcePwzD8nz_OZpdpc-PN7ez64fUpVlIqR5UdZa1SVAwZSqFwvFSq1LVha6qKKuc82RqzznoCvIodIKRQ6cIUAliiw7JGeb3n5w7yP6IDvjFbYtWHSjlzyyYIIJwaOVbqxqcN4PqGU_mA6GlWRUrqHLNVW5Jiw30GPk9Kd9XHTYbAO_lKPhfGMwrpevbhxs_Oz_fd-S5o3W</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xiao, Xiaolin</creator><creator>Xu, Lichao</creator><creator>Yue, Jin</creator><creator>Pan, Baizhou</creator><creator>Xu, Minpeng</creator><creator>Ming, Dong</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3516-561X</orcidid><orcidid>https://orcid.org/0000-0003-2717-2809</orcidid></search><sort><creationdate>20221001</creationdate><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><author>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain-Computer Interfaces</topic><topic>deep learning</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Visual</topic><topic>Photic Stimulation - methods</topic><topic>SSVEP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xiaolin</creatorcontrib><creatorcontrib>Xu, Lichao</creatorcontrib><creatorcontrib>Yue, Jin</creatorcontrib><creatorcontrib>Pan, Baizhou</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xiaolin</au><au>Xu, Lichao</au><au>Yue, Jin</au><au>Pan, Baizhou</au><au>Xu, Minpeng</au><au>Ming, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>56049</spage><pages>56049-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment.
. This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets.
. The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods.
. Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36206723</pmid><doi>10.1088/1741-2552/ac9861</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3516-561X</orcidid><orcidid>https://orcid.org/0000-0003-2717-2809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2022-10, Vol.19 (5), p.56049 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_pubmed_primary_36206723 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Brain-Computer Interfaces deep learning EEG Electroencephalography - methods Evoked Potentials, Visual Photic Stimulation - methods SSVEP |
title | Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20template%20network%20and%20dynamic%20template%20network:%20novel%20network%20designs%20for%20decoding%20steady-state%20visual%20evoked%20potentials&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Xiao,%20Xiaolin&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=56049&rft.pages=56049-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ac9861&rft_dat=%3Cproquest_pubme%3E2723161662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723161662&rft_id=info:pmid/36206723&rfr_iscdi=true |