Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials

. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2022-10, Vol.19 (5), p.56049
Hauptverfasser: Xiao, Xiaolin, Xu, Lichao, Yue, Jin, Pan, Baizhou, Xu, Minpeng, Ming, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 56049
container_title Journal of neural engineering
container_volume 19
creator Xiao, Xiaolin
Xu, Lichao
Yue, Jin
Pan, Baizhou
Xu, Minpeng
Ming, Dong
description . Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment. . This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets. . The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods. . Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.
doi_str_mv 10.1088/1741-2552/ac9861
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36206723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723161662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EouVjZ0IZGQjYTuIkbKiigITEArN1dc7IkNghdgod-N9xVeiCmO7p7r1n-UfICaMXjFbVJStzlvKi4Jeg6kqwHTLdrna3WtAJOfD-ldKMlTXdJ5NMcCpKnk3J19x8YpME7PoWAiYWw4cb3hKwTdKsLHRG_TleJdYtsd16G_TmxfpEuyFq5RpjXxIfEJpV6sM6uDR-hDbBpXuLj_UuoA0GWn9E9nQcePwzD8nz_OZpdpc-PN7ez64fUpVlIqR5UdZa1SVAwZSqFwvFSq1LVha6qKKuc82RqzznoCvIodIKRQ6cIUAliiw7JGeb3n5w7yP6IDvjFbYtWHSjlzyyYIIJwaOVbqxqcN4PqGU_mA6GlWRUrqHLNVW5Jiw30GPk9Kd9XHTYbAO_lKPhfGMwrpevbhxs_Oz_fd-S5o3W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723161662</pqid></control><display><type>article</type><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</creator><creatorcontrib>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</creatorcontrib><description>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment. . This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets. . The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods. . Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac9861</identifier><identifier>PMID: 36206723</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Brain-Computer Interfaces ; deep learning ; EEG ; Electroencephalography - methods ; Evoked Potentials, Visual ; Photic Stimulation - methods ; SSVEP</subject><ispartof>Journal of neural engineering, 2022-10, Vol.19 (5), p.56049</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</citedby><cites>FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</cites><orcidid>0000-0002-3516-561X ; 0000-0003-2717-2809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac9861/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36206723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Xiaolin</creatorcontrib><creatorcontrib>Xu, Lichao</creatorcontrib><creatorcontrib>Yue, Jin</creatorcontrib><creatorcontrib>Pan, Baizhou</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment. . This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets. . The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods. . Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</description><subject>Brain-Computer Interfaces</subject><subject>deep learning</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Visual</subject><subject>Photic Stimulation - methods</subject><subject>SSVEP</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1PwzAQxS0EouVjZ0IZGQjYTuIkbKiigITEArN1dc7IkNghdgod-N9xVeiCmO7p7r1n-UfICaMXjFbVJStzlvKi4Jeg6kqwHTLdrna3WtAJOfD-ldKMlTXdJ5NMcCpKnk3J19x8YpME7PoWAiYWw4cb3hKwTdKsLHRG_TleJdYtsd16G_TmxfpEuyFq5RpjXxIfEJpV6sM6uDR-hDbBpXuLj_UuoA0GWn9E9nQcePwzD8nz_OZpdpc-PN7ez64fUpVlIqR5UdZa1SVAwZSqFwvFSq1LVha6qKKuc82RqzznoCvIodIKRQ6cIUAliiw7JGeb3n5w7yP6IDvjFbYtWHSjlzyyYIIJwaOVbqxqcN4PqGU_mA6GlWRUrqHLNVW5Jiw30GPk9Kd9XHTYbAO_lKPhfGMwrpevbhxs_Oz_fd-S5o3W</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xiao, Xiaolin</creator><creator>Xu, Lichao</creator><creator>Yue, Jin</creator><creator>Pan, Baizhou</creator><creator>Xu, Minpeng</creator><creator>Ming, Dong</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3516-561X</orcidid><orcidid>https://orcid.org/0000-0003-2717-2809</orcidid></search><sort><creationdate>20221001</creationdate><title>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</title><author>Xiao, Xiaolin ; Xu, Lichao ; Yue, Jin ; Pan, Baizhou ; Xu, Minpeng ; Ming, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4579fc97aa51cc9bbc17ff7175f58c1794f2e2c442af8a4a8fce64a21eaa86533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain-Computer Interfaces</topic><topic>deep learning</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Visual</topic><topic>Photic Stimulation - methods</topic><topic>SSVEP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xiaolin</creatorcontrib><creatorcontrib>Xu, Lichao</creatorcontrib><creatorcontrib>Yue, Jin</creatorcontrib><creatorcontrib>Pan, Baizhou</creatorcontrib><creatorcontrib>Xu, Minpeng</creatorcontrib><creatorcontrib>Ming, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xiaolin</au><au>Xu, Lichao</au><au>Yue, Jin</au><au>Pan, Baizhou</au><au>Xu, Minpeng</au><au>Ming, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>56049</spage><pages>56049-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>. Decomposition methods are efficient to decode steady-state visual evoked potentials (SSVEPs). In recent years, the brain-computer interface community has also been developing deep learning networks for decoding SSVEPs. However, there is no clear evidence that current deep learning models outperform decomposition methods on the SSVEP decoding tasks. Many studies lacked the comparison with state-of-the-art decomposition methods in a fair environment. . This study proposed a novel network design motivated by the works of decomposition methods. Fixed template network (FTN) and dynamic template network (DTN) are two novel networks combining the advantages of fixed templates and subject-specific templates. This study also proposed a data augmentation method for SSVEPs. This study compared the intra-subject classification performance of DTN and FTN with that of state-of-the-art decomposition methods on three public SSVEP datasets. . The results show that both FTN and DTN achieved the suboptimal classification performance compared with state-of-the-art decomposition methods. . Both network designs could enhance the decoding performance of SSVEPs, making them promising networks for improving the practicality of SSVEP-based applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36206723</pmid><doi>10.1088/1741-2552/ac9861</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3516-561X</orcidid><orcidid>https://orcid.org/0000-0003-2717-2809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2022-10, Vol.19 (5), p.56049
issn 1741-2560
1741-2552
language eng
recordid cdi_pubmed_primary_36206723
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Brain-Computer Interfaces
deep learning
EEG
Electroencephalography - methods
Evoked Potentials, Visual
Photic Stimulation - methods
SSVEP
title Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20template%20network%20and%20dynamic%20template%20network:%20novel%20network%20designs%20for%20decoding%20steady-state%20visual%20evoked%20potentials&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Xiao,%20Xiaolin&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=56049&rft.pages=56049-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ac9861&rft_dat=%3Cproquest_pubme%3E2723161662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723161662&rft_id=info:pmid/36206723&rfr_iscdi=true