RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics

Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2023-01, Vol.29 (1), p.1070-1080
Hauptverfasser: Chen, Longfei, Ouyang, Yang, Zhang, Haipeng, Hong, Suting, Li, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1080
container_issue 1
container_start_page 1070
container_title IEEE transactions on visualization and computer graphics
container_volume 29
creator Chen, Longfei
Ouyang, Yang
Zhang, Haipeng
Hong, Suting
Li, Quan
description Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.
doi_str_mv 10.1109/TVCG.2022.3209351
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36155450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903340</ieee_id><sourcerecordid>2754958760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</originalsourceid><addsrcrecordid>eNpdkE1vEzEQhi0EoqXwAxASssSFywaPP9fcqgAlUiWkpvS62Gu7uEp2U38g5d_jKKEHTjOaed7R6EHoLZAFANGfbu-WVwtKKF0wSjQT8Aydg-bQEUHk89YTpToqqTxDr3J-IAQ47_VLdMYkCMEFOUe_blZr79NnvJryzo8lTve4_PZ4XUypGZvJ4S_7yWzjmPEc8I2_j_NkNg13NZcUW7suqY6lJo__RIPvYq5teNmgfWmp1-hFMJvs35zqBfr57evt8nt3_eNqtby87kYKsnSSAbeOhT6MjjPlnBu1Ddb3ykMfBOkNdSC8tpYba5RVYFgIVihtneFcswv08Xh3l-bH6nMZtjGPfrMxk59rHqiCXjIpARr64T_0Ya6pPXygBNeiV5I0Co7UmOackw_DLsWtSfsByHDQPxz0Dwf9w0l_y7w_Xa52691T4p_vBrw7AtF7_7TWmjDGCfsLVLeJ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754958760</pqid></control><display><type>article</type><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</creator><creatorcontrib>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</creatorcontrib><description>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3209351</identifier><identifier>PMID: 36155450</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Business ; Data visualization ; Dynamic structural analysis ; Economics ; Forecasting ; Industries ; Inspection ; Interactive systems ; Machine learning ; multivariate time series ; Regeneration ; Regional development ; regional industrial structure ; Spatiotemporal dynamics ; Time series analysis ; visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.1070-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</cites><orcidid>0000-0001-5741-2311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36155450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Longfei</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Hong, Suting</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</description><subject>Biological system modeling</subject><subject>Business</subject><subject>Data visualization</subject><subject>Dynamic structural analysis</subject><subject>Economics</subject><subject>Forecasting</subject><subject>Industries</subject><subject>Inspection</subject><subject>Interactive systems</subject><subject>Machine learning</subject><subject>multivariate time series</subject><subject>Regeneration</subject><subject>Regional development</subject><subject>regional industrial structure</subject><subject>Spatiotemporal dynamics</subject><subject>Time series analysis</subject><subject>visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1vEzEQhi0EoqXwAxASssSFywaPP9fcqgAlUiWkpvS62Gu7uEp2U38g5d_jKKEHTjOaed7R6EHoLZAFANGfbu-WVwtKKF0wSjQT8Aydg-bQEUHk89YTpToqqTxDr3J-IAQ47_VLdMYkCMEFOUe_blZr79NnvJryzo8lTve4_PZ4XUypGZvJ4S_7yWzjmPEc8I2_j_NkNg13NZcUW7suqY6lJo__RIPvYq5teNmgfWmp1-hFMJvs35zqBfr57evt8nt3_eNqtby87kYKsnSSAbeOhT6MjjPlnBu1Ddb3ykMfBOkNdSC8tpYba5RVYFgIVihtneFcswv08Xh3l-bH6nMZtjGPfrMxk59rHqiCXjIpARr64T_0Ya6pPXygBNeiV5I0Co7UmOackw_DLsWtSfsByHDQPxz0Dwf9w0l_y7w_Xa52691T4p_vBrw7AtF7_7TWmjDGCfsLVLeJ0A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Longfei</creator><creator>Ouyang, Yang</creator><creator>Zhang, Haipeng</creator><creator>Hong, Suting</creator><creator>Li, Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5741-2311</orcidid></search><sort><creationdate>20230101</creationdate><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><author>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Business</topic><topic>Data visualization</topic><topic>Dynamic structural analysis</topic><topic>Economics</topic><topic>Forecasting</topic><topic>Industries</topic><topic>Inspection</topic><topic>Interactive systems</topic><topic>Machine learning</topic><topic>multivariate time series</topic><topic>Regeneration</topic><topic>Regional development</topic><topic>regional industrial structure</topic><topic>Spatiotemporal dynamics</topic><topic>Time series analysis</topic><topic>visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Longfei</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Hong, Suting</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Longfei</au><au>Ouyang, Yang</au><au>Zhang, Haipeng</au><au>Hong, Suting</au><au>Li, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>1070</spage><epage>1080</epage><pages>1070-1080</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36155450</pmid><doi>10.1109/TVCG.2022.3209351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5741-2311</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.1070-1080
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_36155450
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Business
Data visualization
Dynamic structural analysis
Economics
Forecasting
Industries
Inspection
Interactive systems
Machine learning
multivariate time series
Regeneration
Regional development
regional industrial structure
Spatiotemporal dynamics
Time series analysis
visualization
title RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RISeer:%20Inspecting%20the%20Status%20and%20Dynamics%20of%20Regional%20Industrial%20Structure%20via%20Visual%20Analytics&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Chen,%20Longfei&rft.date=2023-01-01&rft.volume=29&rft.issue=1&rft.spage=1070&rft.epage=1080&rft.pages=1070-1080&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3209351&rft_dat=%3Cproquest_RIE%3E2754958760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754958760&rft_id=info:pmid/36155450&rft_ieee_id=9903340&rfr_iscdi=true