RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics
Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2023-01, Vol.29 (1), p.1070-1080 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1080 |
---|---|
container_issue | 1 |
container_start_page | 1070 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 29 |
creator | Chen, Longfei Ouyang, Yang Zhang, Haipeng Hong, Suting Li, Quan |
description | Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS. |
doi_str_mv | 10.1109/TVCG.2022.3209351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36155450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903340</ieee_id><sourcerecordid>2754958760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</originalsourceid><addsrcrecordid>eNpdkE1vEzEQhi0EoqXwAxASssSFywaPP9fcqgAlUiWkpvS62Gu7uEp2U38g5d_jKKEHTjOaed7R6EHoLZAFANGfbu-WVwtKKF0wSjQT8Aydg-bQEUHk89YTpToqqTxDr3J-IAQ47_VLdMYkCMEFOUe_blZr79NnvJryzo8lTve4_PZ4XUypGZvJ4S_7yWzjmPEc8I2_j_NkNg13NZcUW7suqY6lJo__RIPvYq5teNmgfWmp1-hFMJvs35zqBfr57evt8nt3_eNqtby87kYKsnSSAbeOhT6MjjPlnBu1Ddb3ykMfBOkNdSC8tpYba5RVYFgIVihtneFcswv08Xh3l-bH6nMZtjGPfrMxk59rHqiCXjIpARr64T_0Ya6pPXygBNeiV5I0Co7UmOackw_DLsWtSfsByHDQPxz0Dwf9w0l_y7w_Xa52691T4p_vBrw7AtF7_7TWmjDGCfsLVLeJ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754958760</pqid></control><display><type>article</type><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</creator><creatorcontrib>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</creatorcontrib><description>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3209351</identifier><identifier>PMID: 36155450</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Business ; Data visualization ; Dynamic structural analysis ; Economics ; Forecasting ; Industries ; Inspection ; Interactive systems ; Machine learning ; multivariate time series ; Regeneration ; Regional development ; regional industrial structure ; Spatiotemporal dynamics ; Time series analysis ; visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.1070-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</cites><orcidid>0000-0001-5741-2311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36155450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Longfei</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Hong, Suting</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</description><subject>Biological system modeling</subject><subject>Business</subject><subject>Data visualization</subject><subject>Dynamic structural analysis</subject><subject>Economics</subject><subject>Forecasting</subject><subject>Industries</subject><subject>Inspection</subject><subject>Interactive systems</subject><subject>Machine learning</subject><subject>multivariate time series</subject><subject>Regeneration</subject><subject>Regional development</subject><subject>regional industrial structure</subject><subject>Spatiotemporal dynamics</subject><subject>Time series analysis</subject><subject>visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1vEzEQhi0EoqXwAxASssSFywaPP9fcqgAlUiWkpvS62Gu7uEp2U38g5d_jKKEHTjOaed7R6EHoLZAFANGfbu-WVwtKKF0wSjQT8Aydg-bQEUHk89YTpToqqTxDr3J-IAQ47_VLdMYkCMEFOUe_blZr79NnvJryzo8lTve4_PZ4XUypGZvJ4S_7yWzjmPEc8I2_j_NkNg13NZcUW7suqY6lJo__RIPvYq5teNmgfWmp1-hFMJvs35zqBfr57evt8nt3_eNqtby87kYKsnSSAbeOhT6MjjPlnBu1Ddb3ykMfBOkNdSC8tpYba5RVYFgIVihtneFcswv08Xh3l-bH6nMZtjGPfrMxk59rHqiCXjIpARr64T_0Ya6pPXygBNeiV5I0Co7UmOackw_DLsWtSfsByHDQPxz0Dwf9w0l_y7w_Xa52691T4p_vBrw7AtF7_7TWmjDGCfsLVLeJ0A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Longfei</creator><creator>Ouyang, Yang</creator><creator>Zhang, Haipeng</creator><creator>Hong, Suting</creator><creator>Li, Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5741-2311</orcidid></search><sort><creationdate>20230101</creationdate><title>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</title><author>Chen, Longfei ; Ouyang, Yang ; Zhang, Haipeng ; Hong, Suting ; Li, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-6314bd3f8fcd437dddc9bfbe87e18f508a2d15e9bb4aba7b71a3ffb579bda4493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Business</topic><topic>Data visualization</topic><topic>Dynamic structural analysis</topic><topic>Economics</topic><topic>Forecasting</topic><topic>Industries</topic><topic>Inspection</topic><topic>Interactive systems</topic><topic>Machine learning</topic><topic>multivariate time series</topic><topic>Regeneration</topic><topic>Regional development</topic><topic>regional industrial structure</topic><topic>Spatiotemporal dynamics</topic><topic>Time series analysis</topic><topic>visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Longfei</creatorcontrib><creatorcontrib>Ouyang, Yang</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Hong, Suting</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Longfei</au><au>Ouyang, Yang</au><au>Zhang, Haipeng</au><au>Hong, Suting</au><au>Li, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>29</volume><issue>1</issue><spage>1070</spage><epage>1080</epage><pages>1070-1080</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Restructuring the regional industrial structure (RIS) has the potential to halt economic recession and achieve revitalization. Understanding the current status and dynamics of RIS will greatly assist in studying and evaluating the current industrial structure. Previous studies have focused on qualitative and quantitative research to rationalize RIS from a macroscopic perspective. Although recent studies have traced information at the industrial enterprise level to complement existing research from a micro perspective, the ambiguity of the underlying variables contributing to the industrial sector and its composition, the dynamic nature, and the large number of multivariant features of RIS records have obscured a deep and fine-grained understanding of RIS. To this end, we propose an interactive visualization system, RISeer , which is based on interpretable machine learning models and enhanced visualizations designed to identify the evolutionary patterns of the RIS and facilitate inter-regional inspection and comparison. Two case studies confirm the effectiveness of our approach, and feedback from experts indicates that RISeer helps them to gain a fine-grained understanding of the dynamics and evolution of the RIS.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36155450</pmid><doi>10.1109/TVCG.2022.3209351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5741-2311</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2023-01, Vol.29 (1), p.1070-1080 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_36155450 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Business Data visualization Dynamic structural analysis Economics Forecasting Industries Inspection Interactive systems Machine learning multivariate time series Regeneration Regional development regional industrial structure Spatiotemporal dynamics Time series analysis visualization |
title | RISeer: Inspecting the Status and Dynamics of Regional Industrial Structure via Visual Analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RISeer:%20Inspecting%20the%20Status%20and%20Dynamics%20of%20Regional%20Industrial%20Structure%20via%20Visual%20Analytics&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Chen,%20Longfei&rft.date=2023-01-01&rft.volume=29&rft.issue=1&rft.spage=1070&rft.epage=1080&rft.pages=1070-1080&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3209351&rft_dat=%3Cproquest_RIE%3E2754958760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754958760&rft_id=info:pmid/36155450&rft_ieee_id=9903340&rfr_iscdi=true |