Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition

Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-04, Vol.35 (4), p.5447-5460
Hauptverfasser: Han, Mengya, Zhan, Yibing, Luo, Yong, Du, Bo, Hu, Han, Wen, Yonggang, Tao, Dacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5460
container_issue 4
container_start_page 5447
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Han, Mengya
Zhan, Yibing
Luo, Yong
Du, Bo
Hu, Han
Wen, Yonggang
Tao, Dacheng
description Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. However, the current metric-based methods generally treat all instances equally and consequently often obtain biased class representation, considering not all instances are equally significant when summarizing the instance-level representations for the class-level representation. For example, some instances may contain unrepresentative information, such as too much background and information of unrelated concepts, which skew the results. To address the above issues, we propose a novel metric-based meta-learning framework termed instance-adaptive class representation learning network (ICRL-Net) for few-shot visual recognition. Specifically, we develop an adaptive instance revaluing network (AIRN) with the capability to address the biased representation issue when generating the class representation, by learning and assigning adaptive weights for different instances according to their relative significance in the support set of corresponding class. In addition, we design an improved bilinear instance representation and incorporate two novel structural losses, i.e., intraclass instance clustering loss and interclass representation distinguishing loss, to further regulate the instance revaluation process and refine the class representation. We conduct extensive experiments on four commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS, and FC100 datasets. The experimental results compared with the state-of-the-art approaches demonstrate the superiority of our ICRL-Net.
doi_str_mv 10.1109/TNNLS.2022.3204684
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_36136920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9899461</ieee_id><sourcerecordid>3033620684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-56469b5d22a81cbf86de756b9ffb13de1086249306b98824f00b97e96593363d3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaYKbP9BCEfSSy7r62JWl3oyxk4BxIHFLb0K7O-sqrCVH0ibk30eOHR-qi8TMMy-DHoS-UjKmlKif69VqeT9mhLExZ6QUsvyAzhkVrGBcyo-n9-TvGbqI8YHkI0glSvUZnXFBuVCMnKNh5ROe9j2-cTEZ10DEM-9SsPWQAM8fB9P3L79O3WLaml2yT4BnvYkR38EuQASXTLLe4SWY4Kzb4M4HvIDn4v5fjv9jY47JbOM3zu7BL-hTZ_oIF8d7hH4v5uvZdbG8vbqZTZdFwyuairytUHXVMmYkbepOihYmlahV19WUt0CJFKxUnOSSlKzsCKnVBJSoFOeCt3yELg-5u-AfB4hJb21soO-NAz9EzSZUqJIzTjP64z_0wQ_B5e00JzmNkfzFmWIHqgk-xgCd3gW7NeFFU6L3XvSbF733oo9e8tD3Y_RQb6E9jbxbyMC3A2AB4NRWUqkyI6_FGZDp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033620684</pqid></control><display><type>article</type><title>Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Mengya ; Zhan, Yibing ; Luo, Yong ; Du, Bo ; Hu, Han ; Wen, Yonggang ; Tao, Dacheng</creator><creatorcontrib>Han, Mengya ; Zhan, Yibing ; Luo, Yong ; Du, Bo ; Hu, Han ; Wen, Yonggang ; Tao, Dacheng</creatorcontrib><description>Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. However, the current metric-based methods generally treat all instances equally and consequently often obtain biased class representation, considering not all instances are equally significant when summarizing the instance-level representations for the class-level representation. For example, some instances may contain unrepresentative information, such as too much background and information of unrelated concepts, which skew the results. To address the above issues, we propose a novel metric-based meta-learning framework termed instance-adaptive class representation learning network (ICRL-Net) for few-shot visual recognition. Specifically, we develop an adaptive instance revaluing network (AIRN) with the capability to address the biased representation issue when generating the class representation, by learning and assigning adaptive weights for different instances according to their relative significance in the support set of corresponding class. In addition, we design an improved bilinear instance representation and incorporate two novel structural losses, i.e., intraclass instance clustering loss and interclass representation distinguishing loss, to further regulate the instance revaluation process and refine the class representation. We conduct extensive experiments on four commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS, and FC100 datasets. The experimental results compared with the state-of-the-art approaches demonstrate the superiority of our ICRL-Net.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3204684</identifier><identifier>PMID: 36136920</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Benchmarks ; Clustering ; Computational modeling ; Extraterrestrial measurements ; Few-shot ; instance-adaptive ; Learning ; meta-learning ; Neural networks ; Recognition ; relative significance ; Representations ; Task analysis ; Training ; Visual discrimination learning ; visual recognition ; Visualization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.5447-5460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-56469b5d22a81cbf86de756b9ffb13de1086249306b98824f00b97e96593363d3</citedby><cites>FETCH-LOGICAL-c351t-56469b5d22a81cbf86de756b9ffb13de1086249306b98824f00b97e96593363d3</cites><orcidid>0000-0003-3499-3832 ; 0000-0001-7225-5449 ; 0000-0003-3180-0484 ; 0000-0002-2751-5114 ; 0000-0002-2296-6370 ; 0000-0001-7532-0496 ; 0000-0002-0059-8458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9899461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9899461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36136920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Mengya</creatorcontrib><creatorcontrib>Zhan, Yibing</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wen, Yonggang</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. However, the current metric-based methods generally treat all instances equally and consequently often obtain biased class representation, considering not all instances are equally significant when summarizing the instance-level representations for the class-level representation. For example, some instances may contain unrepresentative information, such as too much background and information of unrelated concepts, which skew the results. To address the above issues, we propose a novel metric-based meta-learning framework termed instance-adaptive class representation learning network (ICRL-Net) for few-shot visual recognition. Specifically, we develop an adaptive instance revaluing network (AIRN) with the capability to address the biased representation issue when generating the class representation, by learning and assigning adaptive weights for different instances according to their relative significance in the support set of corresponding class. In addition, we design an improved bilinear instance representation and incorporate two novel structural losses, i.e., intraclass instance clustering loss and interclass representation distinguishing loss, to further regulate the instance revaluation process and refine the class representation. We conduct extensive experiments on four commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS, and FC100 datasets. The experimental results compared with the state-of-the-art approaches demonstrate the superiority of our ICRL-Net.</description><subject>Adaptation models</subject><subject>Benchmarks</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Extraterrestrial measurements</subject><subject>Few-shot</subject><subject>instance-adaptive</subject><subject>Learning</subject><subject>meta-learning</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>relative significance</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visual discrimination learning</subject><subject>visual recognition</subject><subject>Visualization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhkVpaYKbP9BCEfSSy7r62JWl3oyxk4BxIHFLb0K7O-sqrCVH0ibk30eOHR-qi8TMMy-DHoS-UjKmlKif69VqeT9mhLExZ6QUsvyAzhkVrGBcyo-n9-TvGbqI8YHkI0glSvUZnXFBuVCMnKNh5ROe9j2-cTEZ10DEM-9SsPWQAM8fB9P3L79O3WLaml2yT4BnvYkR38EuQASXTLLe4SWY4Kzb4M4HvIDn4v5fjv9jY47JbOM3zu7BL-hTZ_oIF8d7hH4v5uvZdbG8vbqZTZdFwyuairytUHXVMmYkbepOihYmlahV19WUt0CJFKxUnOSSlKzsCKnVBJSoFOeCt3yELg-5u-AfB4hJb21soO-NAz9EzSZUqJIzTjP64z_0wQ_B5e00JzmNkfzFmWIHqgk-xgCd3gW7NeFFU6L3XvSbF733oo9e8tD3Y_RQb6E9jbxbyMC3A2AB4NRWUqkyI6_FGZDp</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Han, Mengya</creator><creator>Zhan, Yibing</creator><creator>Luo, Yong</creator><creator>Du, Bo</creator><creator>Hu, Han</creator><creator>Wen, Yonggang</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3499-3832</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0003-3180-0484</orcidid><orcidid>https://orcid.org/0000-0002-2751-5114</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0001-7532-0496</orcidid><orcidid>https://orcid.org/0000-0002-0059-8458</orcidid></search><sort><creationdate>20240401</creationdate><title>Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition</title><author>Han, Mengya ; Zhan, Yibing ; Luo, Yong ; Du, Bo ; Hu, Han ; Wen, Yonggang ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-56469b5d22a81cbf86de756b9ffb13de1086249306b98824f00b97e96593363d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Benchmarks</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Extraterrestrial measurements</topic><topic>Few-shot</topic><topic>instance-adaptive</topic><topic>Learning</topic><topic>meta-learning</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>relative significance</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visual discrimination learning</topic><topic>visual recognition</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Mengya</creatorcontrib><creatorcontrib>Zhan, Yibing</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wen, Yonggang</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Mengya</au><au>Zhan, Yibing</au><au>Luo, Yong</au><au>Du, Bo</au><au>Hu, Han</au><au>Wen, Yonggang</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>5447</spage><epage>5460</epage><pages>5447-5460</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Few-shot visual recognition refers to recognize novel visual concepts from a few labeled instances. Many few-shot visual recognition methods adopt the metric-based meta-learning paradigm by comparing the query representation with class representations to predict the category of query instance. However, the current metric-based methods generally treat all instances equally and consequently often obtain biased class representation, considering not all instances are equally significant when summarizing the instance-level representations for the class-level representation. For example, some instances may contain unrepresentative information, such as too much background and information of unrelated concepts, which skew the results. To address the above issues, we propose a novel metric-based meta-learning framework termed instance-adaptive class representation learning network (ICRL-Net) for few-shot visual recognition. Specifically, we develop an adaptive instance revaluing network (AIRN) with the capability to address the biased representation issue when generating the class representation, by learning and assigning adaptive weights for different instances according to their relative significance in the support set of corresponding class. In addition, we design an improved bilinear instance representation and incorporate two novel structural losses, i.e., intraclass instance clustering loss and interclass representation distinguishing loss, to further regulate the instance revaluation process and refine the class representation. We conduct extensive experiments on four commonly adopted few-shot benchmarks: miniImageNet, tieredImageNet, CIFAR-FS, and FC100 datasets. The experimental results compared with the state-of-the-art approaches demonstrate the superiority of our ICRL-Net.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36136920</pmid><doi>10.1109/TNNLS.2022.3204684</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3499-3832</orcidid><orcidid>https://orcid.org/0000-0001-7225-5449</orcidid><orcidid>https://orcid.org/0000-0003-3180-0484</orcidid><orcidid>https://orcid.org/0000-0002-2751-5114</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0001-7532-0496</orcidid><orcidid>https://orcid.org/0000-0002-0059-8458</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.5447-5460
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_36136920
source IEEE Electronic Library (IEL)
subjects Adaptation models
Benchmarks
Clustering
Computational modeling
Extraterrestrial measurements
Few-shot
instance-adaptive
Learning
meta-learning
Neural networks
Recognition
relative significance
Representations
Task analysis
Training
Visual discrimination learning
visual recognition
Visualization
title Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Not%20All%20Instances%20Contribute%20Equally:%20Instance-Adaptive%20Class%20Representation%20Learning%20for%20Few-Shot%20Visual%20Recognition&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Han,%20Mengya&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=5447&rft.epage=5460&rft.pages=5447-5460&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3204684&rft_dat=%3Cproquest_RIE%3E3033620684%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033620684&rft_id=info:pmid/36136920&rft_ieee_id=9899461&rfr_iscdi=true