Tissue Fixation with a Formic Acid-Deprived Formalin Better Preserves DNA Integrity over Time

Introduction: Optimization of pre-analytic procedures and tissue processing is a basic requirement for reliable and reproducible data to be obtained. Tissue fixation in formalin represents the extensively favored method for surgical tissue specimen processing in diagnostic pathology; however, formal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathobiology (Basel) 2023-06, Vol.90 (3), p.155-165
Hauptverfasser: Berrino, Enrico, Annaratone, Laura, Detillo, Paolo, Grassini, Dora, Bragoni, Alberto, Sapino, Anna, Bussolati, Benedetta, Bussolati, Giovanni, Marchiò, Caterina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Optimization of pre-analytic procedures and tissue processing is a basic requirement for reliable and reproducible data to be obtained. Tissue fixation in formalin represents the extensively favored method for surgical tissue specimen processing in diagnostic pathology; however, formalin fixation exerts a blasting effect on DNA and RNA. Methods: A formic acid-deprived formaldehyde solution was prepared by removing acids with an ion-exchange basic resin and the concentrated, acid-deprived formaldehyde (ADF) solution was employed to prepare a 4% ADF solution in 0.1 M phosphate buffer, pH 7.2–7.4. Human (n = 27) and mouse (n = 20) tissues were fixed in parallel and similar conditions in either ADF or neutral buffered formalin (NBF). DNAs and RNAs were extracted, and fragmentation analyses were performed. Results: Besides no significant differences in terms of extraction yield and absorbance ratio, ADF fixation reduced DNA fragmentation, i.e., the largest fragments (>5,000 bp) were significantly more prevalent in the DNAs purified from ADF-fixed tissues (p < 0.001 in both cohorts). Moreover, we observed that DNA preservation is more stable in ADF-fixed tissue compared to NBF-fixed tissues. Conclusion: Although DNA fragmentation in FFPE tissues is a multifactor process, we showed that the removal of formic acid is responsible for a significant improvement in DNA preservation.
ISSN:1015-2008
1423-0291
DOI:10.1159/000525523