Reinforcement Learning-Based Tracking Control for a Three Mecanum Wheeled Mobile Robot

This brief investigates the robust optimal tracking control for a three Mecanum wheeled mobile robot (MWMR) with the external disturbance by the aid of online actor-critic synchronous learning algorithm. The Euler-Lagrange motion equation of MWMR subject to slipping is established by analyzing the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-01, Vol.35 (1), p.1445-1452
Hauptverfasser: Zhang, Dianfeng, Wang, Guangcang, Wu, Zhaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief investigates the robust optimal tracking control for a three Mecanum wheeled mobile robot (MWMR) with the external disturbance by the aid of online actor-critic synchronous learning algorithm. The Euler-Lagrange motion equation of MWMR subject to slipping is established by analyzing the structural characteristics of Mecanum wheels. Concatenating the tracking error with the desired trajectory, the tracking control problem is converted into a time-invariant optimal control problem of an augmented system. Then, an approximate optimal tracking controller is obtained by applying online actor-critic synchronous learning algorithm. With the help of Lyapunov-based analysis, the ultimately bounded tracking can be guaranteed. Finally, simulation results show the effectiveness of synchronous learning algorithm and approximate optimal tracking controller.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2022.3185055