Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics
Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in sit...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-06, Vol.13 (1), p.3434 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3434 |
container_title | Nature communications |
container_volume | 13 |
creator | Zhang, Mao-Hua Shen, Chen Zhao, Changhao Dai, Mian Yao, Fang-Zhou Wu, Bo Ma, Jian Nan, Hu Wang, Dawei Yuan, Qibin da Silva, Lucas Lemos Fulanović, Lovro Schökel, Alexander Liu, Peitao Zhang, Hongbin Li, Jing-Feng Zhang, Nan Wang, Ke Rödel, Jürgen Hinterstein, Manuel |
description | Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO
solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V
along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides. |
doi_str_mv | 10.1038/s41467-022-31158-x |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35701480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35701480</sourcerecordid><originalsourceid>FETCH-pubmed_primary_357014803</originalsourceid><addsrcrecordid>eNqFjsFqAjEURUNBVNQf6KJkWaHRvEnsTNdaKRR0414yk1fzipMJyQxov74Dtmvv5sDlXLiMPYJcgFTFMmnQr7mQWSYUwKoQlwc2zqQGAXmmRmyW0rfso96g0HrIRmqVS9CFHDO7wYqCw0j-xFuHPDiTkLfR-EQtNV6Qt12FlnfnvnR0cjwQ_jQRU2h8r5Lnz58vOzPflXuuuCj7vb05FUZTU5WmbPBlzglnf5ywp-37Yf0hQlfWaI8hUm3i9fh_S90VfgH3mUmO</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</creator><creatorcontrib>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</creatorcontrib><description>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO
solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V
along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31158-x</identifier><identifier>PMID: 35701480</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature communications, 2022-06, Vol.13 (1), p.3434</ispartof><rights>2022. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1035-8861 ; 0000-0003-3739-8406 ; 0000-0002-0185-0512 ; 0000-0002-9194-5688 ; 0000-0002-8975-7741 ; 0000-0002-5121-9841 ; 0000-0003-4710-3923 ; 0000-0002-9823-4547 ; 0000-0003-4650-7547 ; 0000-0002-3680-8648 ; 0000-0003-1975-7452 ; 0000-0002-8515-429X ; 0000-0001-9840-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35701480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Mao-Hua</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Zhao, Changhao</creatorcontrib><creatorcontrib>Dai, Mian</creatorcontrib><creatorcontrib>Yao, Fang-Zhou</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><creatorcontrib>Nan, Hu</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Yuan, Qibin</creatorcontrib><creatorcontrib>da Silva, Lucas Lemos</creatorcontrib><creatorcontrib>Fulanović, Lovro</creatorcontrib><creatorcontrib>Schökel, Alexander</creatorcontrib><creatorcontrib>Liu, Peitao</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO
solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V
along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjsFqAjEURUNBVNQf6KJkWaHRvEnsTNdaKRR0414yk1fzipMJyQxov74Dtmvv5sDlXLiMPYJcgFTFMmnQr7mQWSYUwKoQlwc2zqQGAXmmRmyW0rfso96g0HrIRmqVS9CFHDO7wYqCw0j-xFuHPDiTkLfR-EQtNV6Qt12FlnfnvnR0cjwQ_jQRU2h8r5Lnz58vOzPflXuuuCj7vb05FUZTU5WmbPBlzglnf5ywp-37Yf0hQlfWaI8hUm3i9fh_S90VfgH3mUmO</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Zhang, Mao-Hua</creator><creator>Shen, Chen</creator><creator>Zhao, Changhao</creator><creator>Dai, Mian</creator><creator>Yao, Fang-Zhou</creator><creator>Wu, Bo</creator><creator>Ma, Jian</creator><creator>Nan, Hu</creator><creator>Wang, Dawei</creator><creator>Yuan, Qibin</creator><creator>da Silva, Lucas Lemos</creator><creator>Fulanović, Lovro</creator><creator>Schökel, Alexander</creator><creator>Liu, Peitao</creator><creator>Zhang, Hongbin</creator><creator>Li, Jing-Feng</creator><creator>Zhang, Nan</creator><creator>Wang, Ke</creator><creator>Rödel, Jürgen</creator><creator>Hinterstein, Manuel</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-1035-8861</orcidid><orcidid>https://orcid.org/0000-0003-3739-8406</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-9194-5688</orcidid><orcidid>https://orcid.org/0000-0002-8975-7741</orcidid><orcidid>https://orcid.org/0000-0002-5121-9841</orcidid><orcidid>https://orcid.org/0000-0003-4710-3923</orcidid><orcidid>https://orcid.org/0000-0002-9823-4547</orcidid><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-3680-8648</orcidid><orcidid>https://orcid.org/0000-0003-1975-7452</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid><orcidid>https://orcid.org/0000-0001-9840-2427</orcidid></search><sort><creationdate>20220615</creationdate><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><author>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_357014803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mao-Hua</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Zhao, Changhao</creatorcontrib><creatorcontrib>Dai, Mian</creatorcontrib><creatorcontrib>Yao, Fang-Zhou</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><creatorcontrib>Nan, Hu</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Yuan, Qibin</creatorcontrib><creatorcontrib>da Silva, Lucas Lemos</creatorcontrib><creatorcontrib>Fulanović, Lovro</creatorcontrib><creatorcontrib>Schökel, Alexander</creatorcontrib><creatorcontrib>Liu, Peitao</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mao-Hua</au><au>Shen, Chen</au><au>Zhao, Changhao</au><au>Dai, Mian</au><au>Yao, Fang-Zhou</au><au>Wu, Bo</au><au>Ma, Jian</au><au>Nan, Hu</au><au>Wang, Dawei</au><au>Yuan, Qibin</au><au>da Silva, Lucas Lemos</au><au>Fulanović, Lovro</au><au>Schökel, Alexander</au><au>Liu, Peitao</au><au>Zhang, Hongbin</au><au>Li, Jing-Feng</au><au>Zhang, Nan</au><au>Wang, Ke</au><au>Rödel, Jürgen</au><au>Hinterstein, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>3434</spage><pages>3434-</pages><eissn>2041-1723</eissn><abstract>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO
solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V
along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</abstract><cop>England</cop><pmid>35701480</pmid><doi>10.1038/s41467-022-31158-x</doi><orcidid>https://orcid.org/0000-0002-1035-8861</orcidid><orcidid>https://orcid.org/0000-0003-3739-8406</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-9194-5688</orcidid><orcidid>https://orcid.org/0000-0002-8975-7741</orcidid><orcidid>https://orcid.org/0000-0002-5121-9841</orcidid><orcidid>https://orcid.org/0000-0003-4710-3923</orcidid><orcidid>https://orcid.org/0000-0002-9823-4547</orcidid><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-3680-8648</orcidid><orcidid>https://orcid.org/0000-0003-1975-7452</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid><orcidid>https://orcid.org/0000-0001-9840-2427</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2022-06, Vol.13 (1), p.3434 |
issn | 2041-1723 |
language | eng |
recordid | cdi_pubmed_primary_35701480 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
title | Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20phase%20transition-induced%20ultrahigh%20piezoresponse%20in%20(K,Na)NbO%203%20-based%20piezoceramics&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Mao-Hua&rft.date=2022-06-15&rft.volume=13&rft.issue=1&rft.spage=3434&rft.pages=3434-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31158-x&rft_dat=%3Cpubmed%3E35701480%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35701480&rfr_iscdi=true |