Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics

Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-06, Vol.13 (1), p.3434
Hauptverfasser: Zhang, Mao-Hua, Shen, Chen, Zhao, Changhao, Dai, Mian, Yao, Fang-Zhou, Wu, Bo, Ma, Jian, Nan, Hu, Wang, Dawei, Yuan, Qibin, da Silva, Lucas Lemos, Fulanović, Lovro, Schökel, Alexander, Liu, Peitao, Zhang, Hongbin, Li, Jing-Feng, Zhang, Nan, Wang, Ke, Rödel, Jürgen, Hinterstein, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3434
container_title Nature communications
container_volume 13
creator Zhang, Mao-Hua
Shen, Chen
Zhao, Changhao
Dai, Mian
Yao, Fang-Zhou
Wu, Bo
Ma, Jian
Nan, Hu
Wang, Dawei
Yuan, Qibin
da Silva, Lucas Lemos
Fulanović, Lovro
Schökel, Alexander
Liu, Peitao
Zhang, Hongbin
Li, Jing-Feng
Zhang, Nan
Wang, Ke
Rödel, Jürgen
Hinterstein, Manuel
description Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.
doi_str_mv 10.1038/s41467-022-31158-x
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35701480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35701480</sourcerecordid><originalsourceid>FETCH-pubmed_primary_357014803</originalsourceid><addsrcrecordid>eNqFjsFqAjEURUNBVNQf6KJkWaHRvEnsTNdaKRR0414yk1fzipMJyQxov74Dtmvv5sDlXLiMPYJcgFTFMmnQr7mQWSYUwKoQlwc2zqQGAXmmRmyW0rfso96g0HrIRmqVS9CFHDO7wYqCw0j-xFuHPDiTkLfR-EQtNV6Qt12FlnfnvnR0cjwQ_jQRU2h8r5Lnz58vOzPflXuuuCj7vb05FUZTU5WmbPBlzglnf5ywp-37Yf0hQlfWaI8hUm3i9fh_S90VfgH3mUmO</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</creator><creatorcontrib>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</creatorcontrib><description>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31158-x</identifier><identifier>PMID: 35701480</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature communications, 2022-06, Vol.13 (1), p.3434</ispartof><rights>2022. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1035-8861 ; 0000-0003-3739-8406 ; 0000-0002-0185-0512 ; 0000-0002-9194-5688 ; 0000-0002-8975-7741 ; 0000-0002-5121-9841 ; 0000-0003-4710-3923 ; 0000-0002-9823-4547 ; 0000-0003-4650-7547 ; 0000-0002-3680-8648 ; 0000-0003-1975-7452 ; 0000-0002-8515-429X ; 0000-0001-9840-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35701480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Mao-Hua</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Zhao, Changhao</creatorcontrib><creatorcontrib>Dai, Mian</creatorcontrib><creatorcontrib>Yao, Fang-Zhou</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><creatorcontrib>Nan, Hu</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Yuan, Qibin</creatorcontrib><creatorcontrib>da Silva, Lucas Lemos</creatorcontrib><creatorcontrib>Fulanović, Lovro</creatorcontrib><creatorcontrib>Schökel, Alexander</creatorcontrib><creatorcontrib>Liu, Peitao</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjsFqAjEURUNBVNQf6KJkWaHRvEnsTNdaKRR0414yk1fzipMJyQxov74Dtmvv5sDlXLiMPYJcgFTFMmnQr7mQWSYUwKoQlwc2zqQGAXmmRmyW0rfso96g0HrIRmqVS9CFHDO7wYqCw0j-xFuHPDiTkLfR-EQtNV6Qt12FlnfnvnR0cjwQ_jQRU2h8r5Lnz58vOzPflXuuuCj7vb05FUZTU5WmbPBlzglnf5ywp-37Yf0hQlfWaI8hUm3i9fh_S90VfgH3mUmO</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Zhang, Mao-Hua</creator><creator>Shen, Chen</creator><creator>Zhao, Changhao</creator><creator>Dai, Mian</creator><creator>Yao, Fang-Zhou</creator><creator>Wu, Bo</creator><creator>Ma, Jian</creator><creator>Nan, Hu</creator><creator>Wang, Dawei</creator><creator>Yuan, Qibin</creator><creator>da Silva, Lucas Lemos</creator><creator>Fulanović, Lovro</creator><creator>Schökel, Alexander</creator><creator>Liu, Peitao</creator><creator>Zhang, Hongbin</creator><creator>Li, Jing-Feng</creator><creator>Zhang, Nan</creator><creator>Wang, Ke</creator><creator>Rödel, Jürgen</creator><creator>Hinterstein, Manuel</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-1035-8861</orcidid><orcidid>https://orcid.org/0000-0003-3739-8406</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-9194-5688</orcidid><orcidid>https://orcid.org/0000-0002-8975-7741</orcidid><orcidid>https://orcid.org/0000-0002-5121-9841</orcidid><orcidid>https://orcid.org/0000-0003-4710-3923</orcidid><orcidid>https://orcid.org/0000-0002-9823-4547</orcidid><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-3680-8648</orcidid><orcidid>https://orcid.org/0000-0003-1975-7452</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid><orcidid>https://orcid.org/0000-0001-9840-2427</orcidid></search><sort><creationdate>20220615</creationdate><title>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</title><author>Zhang, Mao-Hua ; Shen, Chen ; Zhao, Changhao ; Dai, Mian ; Yao, Fang-Zhou ; Wu, Bo ; Ma, Jian ; Nan, Hu ; Wang, Dawei ; Yuan, Qibin ; da Silva, Lucas Lemos ; Fulanović, Lovro ; Schökel, Alexander ; Liu, Peitao ; Zhang, Hongbin ; Li, Jing-Feng ; Zhang, Nan ; Wang, Ke ; Rödel, Jürgen ; Hinterstein, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_357014803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mao-Hua</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Zhao, Changhao</creatorcontrib><creatorcontrib>Dai, Mian</creatorcontrib><creatorcontrib>Yao, Fang-Zhou</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Ma, Jian</creatorcontrib><creatorcontrib>Nan, Hu</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Yuan, Qibin</creatorcontrib><creatorcontrib>da Silva, Lucas Lemos</creatorcontrib><creatorcontrib>Fulanović, Lovro</creatorcontrib><creatorcontrib>Schökel, Alexander</creatorcontrib><creatorcontrib>Liu, Peitao</creatorcontrib><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Rödel, Jürgen</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mao-Hua</au><au>Shen, Chen</au><au>Zhao, Changhao</au><au>Dai, Mian</au><au>Yao, Fang-Zhou</au><au>Wu, Bo</au><au>Ma, Jian</au><au>Nan, Hu</au><au>Wang, Dawei</au><au>Yuan, Qibin</au><au>da Silva, Lucas Lemos</au><au>Fulanović, Lovro</au><au>Schökel, Alexander</au><au>Liu, Peitao</au><au>Zhang, Hongbin</au><au>Li, Jing-Feng</au><au>Zhang, Nan</au><au>Wang, Ke</au><au>Rödel, Jürgen</au><au>Hinterstein, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>3434</spage><pages>3434-</pages><eissn>2041-1723</eissn><abstract>Here, we introduce phase change mechanisms in lead-free piezoceramics as a strategy to utilize attendant volume change for harvesting large electrostrain. In the newly developed (K,Na)NbO solid-solution at the polymorphic phase boundary we combine atomic mapping of the local polar vector with in situ synchrotron X-ray diffraction and density functional theory to uncover the phase change and interpret its underlying nature. We demonstrate that an electric field-induced phase transition between orthorhombic and tetragonal phases triggers a dramatic volume change and contributes to a huge effective piezoelectric coefficient of 1250 pm V along specific crystallographic directions. The existence of the phase transition is validated by a significant volume change evidenced by the simultaneous recording of macroscopic longitudinal and transverse strain. The principle of using phase transition to promote electrostrain provides broader design flexibility in the development of high-performance piezoelectric materials and opens the door for the discovery of high-performance future functional oxides.</abstract><cop>England</cop><pmid>35701480</pmid><doi>10.1038/s41467-022-31158-x</doi><orcidid>https://orcid.org/0000-0002-1035-8861</orcidid><orcidid>https://orcid.org/0000-0003-3739-8406</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-9194-5688</orcidid><orcidid>https://orcid.org/0000-0002-8975-7741</orcidid><orcidid>https://orcid.org/0000-0002-5121-9841</orcidid><orcidid>https://orcid.org/0000-0003-4710-3923</orcidid><orcidid>https://orcid.org/0000-0002-9823-4547</orcidid><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-3680-8648</orcidid><orcidid>https://orcid.org/0000-0003-1975-7452</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid><orcidid>https://orcid.org/0000-0001-9840-2427</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2022-06, Vol.13 (1), p.3434
issn 2041-1723
language eng
recordid cdi_pubmed_primary_35701480
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
title Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO 3 -based piezoceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20the%20phase%20transition-induced%20ultrahigh%20piezoresponse%20in%20(K,Na)NbO%203%20-based%20piezoceramics&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Mao-Hua&rft.date=2022-06-15&rft.volume=13&rft.issue=1&rft.spage=3434&rft.pages=3434-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31158-x&rft_dat=%3Cpubmed%3E35701480%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35701480&rfr_iscdi=true