A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies

Clinical studies are generally required to characterize the accuracy of new diagnostic tests. In some cases, historical data are available from a predicate device, which is directly relevant to the new test. If this data can be appropriately incorporated into the new test study design, there is an o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2023-01, Vol.33 (1), p.77-89
Hauptverfasser: Hickey, Graeme L., Parvu, Valentin, Zhang, Yongqiang, Cooper, Charles K., Wan, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 77
container_title Journal of biopharmaceutical statistics
container_volume 33
creator Hickey, Graeme L.
Parvu, Valentin
Zhang, Yongqiang
Cooper, Charles K.
Wan, Ying
description Clinical studies are generally required to characterize the accuracy of new diagnostic tests. In some cases, historical data are available from a predicate device, which is directly relevant to the new test. If this data can be appropriately incorporated into the new test study design, there is an opportunity to reduce the sample size and trial duration for the new test. One approach to achieve this is the Bayesian power prior method, which allows for the historical information to be down-weighted via a power parameter. We propose a dynamic method to calculate the power parameter based on first comparing the data between the historical and new data sources using a one-sided comparison, and second mapping the comparison probability through a scaled-Weibull discount function to tune the effective sample size borrowed. This pragmatic and conservative approach is embedded in an adaptive trial framework allowing for the trial to stop early for success. An example is presented for a new test developed to detect Methicillin-resistant Staphylococcus aureus present in the nasal carriage.
doi_str_mv 10.1080/10543406.2022.2080690
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35649152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087515791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4c7d218b7cf9b63d096724b0f7dd5556cd06f4741ce08b186cf3bb5ffcbf69443</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhS3UCijwE1pF6oZNYJz4kexAqLSVkLopa8vx42KUxKntUN1_z1zdSxcsuvFYnm-Oj30I-UzhikIH1xQ4axmIqwaaBpcORA9H5JTyBmouKf2Ae2TqHXRCPuX8DEC57NgxOWm5YD2SpyTeVkvSm0mXYCq9LClq81T5mCq7nfUUjB7HbRVmE9MSE1LzBgecxUZxlXUvwWDRRSODjZgXZ0p4wbOgN3PMO9nicqlyWW1w-Zx89HrM7uJQz8jj_bffdz_qh1_ff97dPtSmZU2pmZG2od0gje8H0VrohWzYAF5ayzkXxoLwTDJqHHQD7YTx7TBw783gRc9Ye0Yu97ro6c-KBtQUsnHjqGcX16wa1JMgWuCIfn2HPsc1zehOtdBJjp_WU6T4njL4yJycV0sKk05bRUHtElFviahdIuqQCM59Oaivw-Tsv6m3CBC42QNhxm-f9N-YRquK3o4x-aRnE9DH_-94BbrXm9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087515791</pqid></control><display><type>article</type><title>A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><creator>Hickey, Graeme L. ; Parvu, Valentin ; Zhang, Yongqiang ; Cooper, Charles K. ; Wan, Ying</creator><creatorcontrib>Hickey, Graeme L. ; Parvu, Valentin ; Zhang, Yongqiang ; Cooper, Charles K. ; Wan, Ying</creatorcontrib><description>Clinical studies are generally required to characterize the accuracy of new diagnostic tests. In some cases, historical data are available from a predicate device, which is directly relevant to the new test. If this data can be appropriately incorporated into the new test study design, there is an opportunity to reduce the sample size and trial duration for the new test. One approach to achieve this is the Bayesian power prior method, which allows for the historical information to be down-weighted via a power parameter. We propose a dynamic method to calculate the power parameter based on first comparing the data between the historical and new data sources using a one-sided comparison, and second mapping the comparison probability through a scaled-Weibull discount function to tune the effective sample size borrowed. This pragmatic and conservative approach is embedded in an adaptive trial framework allowing for the trial to stop early for success. An example is presented for a new test developed to detect Methicillin-resistant Staphylococcus aureus present in the nasal carriage.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1080/10543406.2022.2080690</identifier><identifier>PMID: 35649152</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Augmentation ; Bayes Theorem ; Bayesian ; diagnostic tests ; Diagnostic Tests, Routine ; Humans ; Methicillin-Resistant Staphylococcus aureus ; Prospective Studies ; Research Design ; sensitivity ; Staphylococcus infections</subject><ispartof>Journal of biopharmaceutical statistics, 2023-01, Vol.33 (1), p.77-89</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-4c7d218b7cf9b63d096724b0f7dd5556cd06f4741ce08b186cf3bb5ffcbf69443</cites><orcidid>0000-0002-4989-0054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35649152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hickey, Graeme L.</creatorcontrib><creatorcontrib>Parvu, Valentin</creatorcontrib><creatorcontrib>Zhang, Yongqiang</creatorcontrib><creatorcontrib>Cooper, Charles K.</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><title>A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>Clinical studies are generally required to characterize the accuracy of new diagnostic tests. In some cases, historical data are available from a predicate device, which is directly relevant to the new test. If this data can be appropriately incorporated into the new test study design, there is an opportunity to reduce the sample size and trial duration for the new test. One approach to achieve this is the Bayesian power prior method, which allows for the historical information to be down-weighted via a power parameter. We propose a dynamic method to calculate the power parameter based on first comparing the data between the historical and new data sources using a one-sided comparison, and second mapping the comparison probability through a scaled-Weibull discount function to tune the effective sample size borrowed. This pragmatic and conservative approach is embedded in an adaptive trial framework allowing for the trial to stop early for success. An example is presented for a new test developed to detect Methicillin-resistant Staphylococcus aureus present in the nasal carriage.</description><subject>Augmentation</subject><subject>Bayes Theorem</subject><subject>Bayesian</subject><subject>diagnostic tests</subject><subject>Diagnostic Tests, Routine</subject><subject>Humans</subject><subject>Methicillin-Resistant Staphylococcus aureus</subject><subject>Prospective Studies</subject><subject>Research Design</subject><subject>sensitivity</subject><subject>Staphylococcus infections</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3TAQhS3UCijwE1pF6oZNYJz4kexAqLSVkLopa8vx42KUxKntUN1_z1zdSxcsuvFYnm-Oj30I-UzhikIH1xQ4axmIqwaaBpcORA9H5JTyBmouKf2Ae2TqHXRCPuX8DEC57NgxOWm5YD2SpyTeVkvSm0mXYCq9LClq81T5mCq7nfUUjB7HbRVmE9MSE1LzBgecxUZxlXUvwWDRRSODjZgXZ0p4wbOgN3PMO9nicqlyWW1w-Zx89HrM7uJQz8jj_bffdz_qh1_ff97dPtSmZU2pmZG2od0gje8H0VrohWzYAF5ayzkXxoLwTDJqHHQD7YTx7TBw783gRc9Ye0Yu97ro6c-KBtQUsnHjqGcX16wa1JMgWuCIfn2HPsc1zehOtdBJjp_WU6T4njL4yJycV0sKk05bRUHtElFviahdIuqQCM59Oaivw-Tsv6m3CBC42QNhxm-f9N-YRquK3o4x-aRnE9DH_-94BbrXm9E</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Hickey, Graeme L.</creator><creator>Parvu, Valentin</creator><creator>Zhang, Yongqiang</creator><creator>Cooper, Charles K.</creator><creator>Wan, Ying</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4989-0054</orcidid></search><sort><creationdate>20230102</creationdate><title>A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies</title><author>Hickey, Graeme L. ; Parvu, Valentin ; Zhang, Yongqiang ; Cooper, Charles K. ; Wan, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4c7d218b7cf9b63d096724b0f7dd5556cd06f4741ce08b186cf3bb5ffcbf69443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Augmentation</topic><topic>Bayes Theorem</topic><topic>Bayesian</topic><topic>diagnostic tests</topic><topic>Diagnostic Tests, Routine</topic><topic>Humans</topic><topic>Methicillin-Resistant Staphylococcus aureus</topic><topic>Prospective Studies</topic><topic>Research Design</topic><topic>sensitivity</topic><topic>Staphylococcus infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hickey, Graeme L.</creatorcontrib><creatorcontrib>Parvu, Valentin</creatorcontrib><creatorcontrib>Zhang, Yongqiang</creatorcontrib><creatorcontrib>Cooper, Charles K.</creatorcontrib><creatorcontrib>Wan, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hickey, Graeme L.</au><au>Parvu, Valentin</au><au>Zhang, Yongqiang</au><au>Cooper, Charles K.</au><au>Wan, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2023-01-02</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>77</spage><epage>89</epage><pages>77-89</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>Clinical studies are generally required to characterize the accuracy of new diagnostic tests. In some cases, historical data are available from a predicate device, which is directly relevant to the new test. If this data can be appropriately incorporated into the new test study design, there is an opportunity to reduce the sample size and trial duration for the new test. One approach to achieve this is the Bayesian power prior method, which allows for the historical information to be down-weighted via a power parameter. We propose a dynamic method to calculate the power parameter based on first comparing the data between the historical and new data sources using a one-sided comparison, and second mapping the comparison probability through a scaled-Weibull discount function to tune the effective sample size borrowed. This pragmatic and conservative approach is embedded in an adaptive trial framework allowing for the trial to stop early for success. An example is presented for a new test developed to detect Methicillin-resistant Staphylococcus aureus present in the nasal carriage.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35649152</pmid><doi>10.1080/10543406.2022.2080690</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4989-0054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-3406
ispartof Journal of biopharmaceutical statistics, 2023-01, Vol.33 (1), p.77-89
issn 1054-3406
1520-5711
language eng
recordid cdi_pubmed_primary_35649152
source MEDLINE; EBSCOhost Business Source Complete
subjects Augmentation
Bayes Theorem
Bayesian
diagnostic tests
Diagnostic Tests, Routine
Humans
Methicillin-Resistant Staphylococcus aureus
Prospective Studies
Research Design
sensitivity
Staphylococcus infections
title A pragmatic approach for dynamically incorporating predicate device data in prospective diagnostic test studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pragmatic%20approach%20for%20dynamically%20incorporating%20predicate%20device%20data%20in%20prospective%20diagnostic%20test%20studies&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Hickey,%20Graeme%20L.&rft.date=2023-01-02&rft.volume=33&rft.issue=1&rft.spage=77&rft.epage=89&rft.pages=77-89&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1080/10543406.2022.2080690&rft_dat=%3Cproquest_pubme%3E3087515791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087515791&rft_id=info:pmid/35649152&rfr_iscdi=true