Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions

Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2022-06, Vol.58 (49), p.6898-691
Hauptverfasser: Graham, Richard S, Wheatley, Richard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 49
container_start_page 6898
container_title Chemical communications (Cambridge, England)
container_volume 58
creator Graham, Richard S
Wheatley, Richard J
description Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning ab initio calculations can be performed at higher accuracy. As an exemplar we compute the PES for all three-body cross interactions for CO 2 -Ar mixtures. From these we calculate the CO 2 -Ar virial coefficients up to 5th order. The resulting virial equation of state (EoS) is convergent for densities up to the critical density. Where convergent, the EoS makes accurate first-principles predictions for a range of thermophysical properties for CO 2 -Ar mixtures, including the compressibility factor, speed of sound and Joule-Thomson coefficient. Our method has great potential to make wide-ranging first-principles predictions for mixtures of comparably sized molecules. Such predictions can replace the need for expensive, laborious and repetitive experiments and inform the continuum models required for applications. Via a generally applicable method, we interpolate ab initio calculations of intermolecular interactions and produce successful first-principles predictions.
doi_str_mv 10.1039/d2cc01820a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35642644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677021454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1886a028fc8e4f67272630d19c285b130c7a05d67c07319be96989b90a9d8df63</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4NU7A-9eG8J9FIKq_m12aS3x1OrUPGi4G3JS2bblN1km2SF_vfm-Z5PcC4zMJ_5MjNfhN5S8o4Srt87Zi2hihHzAp1QLkXTCvXzaFu3uum4aI_Rac6PpAZt1St0zFspmBTiBIWvxj74AHgEk4IP93iICYcYGuOcL_4XYB8KpCmOYJfRJDzHAqF4M-Yb_LSYUJYJ2weYfC7pGZeIB59yaebkg_XzCBnPCZy3xceQX6OXQ52EN_t8hn58-vh9_bm5-3b7Zb26a6ygojRUKWkIU4NVIAbZsY5JThzVlql2QzmxnSGtk50lHad6A1pqpTeaGO2UGyQ_Q1c73TnFpwVy6et-FsbRBIhL7lnV5FRpTSp6-R_6GJcU6nZbqiOMilZU6npH2RRzTjD09cDJpOeekn7rQv-Brdd_XFhV-GIvuWwmcAf079srcL4DUraH7j8b-W-FyYzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677021454</pqid></control><display><type>article</type><title>Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Graham, Richard S ; Wheatley, Richard J</creator><creatorcontrib>Graham, Richard S ; Wheatley, Richard J</creatorcontrib><description>Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning ab initio calculations can be performed at higher accuracy. As an exemplar we compute the PES for all three-body cross interactions for CO 2 -Ar mixtures. From these we calculate the CO 2 -Ar virial coefficients up to 5th order. The resulting virial equation of state (EoS) is convergent for densities up to the critical density. Where convergent, the EoS makes accurate first-principles predictions for a range of thermophysical properties for CO 2 -Ar mixtures, including the compressibility factor, speed of sound and Joule-Thomson coefficient. Our method has great potential to make wide-ranging first-principles predictions for mixtures of comparably sized molecules. Such predictions can replace the need for expensive, laborious and repetitive experiments and inform the continuum models required for applications. Via a generally applicable method, we interpolate ab initio calculations of intermolecular interactions and produce successful first-principles predictions.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d2cc01820a</identifier><identifier>PMID: 35642644</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Compressibility ; Continuum modeling ; Convergence ; Equations of state ; First principles ; Gaussian process ; Interpolation ; Machine learning ; Mixtures ; Potential energy ; Quantum chemistry ; Thermophysical properties ; Thomson coefficient ; Virial coefficients</subject><ispartof>Chemical communications (Cambridge, England), 2022-06, Vol.58 (49), p.6898-691</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1886a028fc8e4f67272630d19c285b130c7a05d67c07319be96989b90a9d8df63</citedby><cites>FETCH-LOGICAL-c414t-1886a028fc8e4f67272630d19c285b130c7a05d67c07319be96989b90a9d8df63</cites><orcidid>0000-0002-5530-8120 ; 0000-0002-2096-7708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35642644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, Richard S</creatorcontrib><creatorcontrib>Wheatley, Richard J</creatorcontrib><title>Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning ab initio calculations can be performed at higher accuracy. As an exemplar we compute the PES for all three-body cross interactions for CO 2 -Ar mixtures. From these we calculate the CO 2 -Ar virial coefficients up to 5th order. The resulting virial equation of state (EoS) is convergent for densities up to the critical density. Where convergent, the EoS makes accurate first-principles predictions for a range of thermophysical properties for CO 2 -Ar mixtures, including the compressibility factor, speed of sound and Joule-Thomson coefficient. Our method has great potential to make wide-ranging first-principles predictions for mixtures of comparably sized molecules. Such predictions can replace the need for expensive, laborious and repetitive experiments and inform the continuum models required for applications. Via a generally applicable method, we interpolate ab initio calculations of intermolecular interactions and produce successful first-principles predictions.</description><subject>Carbon dioxide</subject><subject>Compressibility</subject><subject>Continuum modeling</subject><subject>Convergence</subject><subject>Equations of state</subject><subject>First principles</subject><subject>Gaussian process</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Mixtures</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Thermophysical properties</subject><subject>Thomson coefficient</subject><subject>Virial coefficients</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFTEQx4NU7A-9eG8J9FIKq_m12aS3x1OrUPGi4G3JS2bblN1km2SF_vfm-Z5PcC4zMJ_5MjNfhN5S8o4Srt87Zi2hihHzAp1QLkXTCvXzaFu3uum4aI_Rac6PpAZt1St0zFspmBTiBIWvxj74AHgEk4IP93iICYcYGuOcL_4XYB8KpCmOYJfRJDzHAqF4M-Yb_LSYUJYJ2weYfC7pGZeIB59yaebkg_XzCBnPCZy3xceQX6OXQ52EN_t8hn58-vh9_bm5-3b7Zb26a6ygojRUKWkIU4NVIAbZsY5JThzVlql2QzmxnSGtk50lHad6A1pqpTeaGO2UGyQ_Q1c73TnFpwVy6et-FsbRBIhL7lnV5FRpTSp6-R_6GJcU6nZbqiOMilZU6npH2RRzTjD09cDJpOeekn7rQv-Brdd_XFhV-GIvuWwmcAf079srcL4DUraH7j8b-W-FyYzh</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Graham, Richard S</creator><creator>Wheatley, Richard J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5530-8120</orcidid><orcidid>https://orcid.org/0000-0002-2096-7708</orcidid></search><sort><creationdate>20220616</creationdate><title>Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions</title><author>Graham, Richard S ; Wheatley, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1886a028fc8e4f67272630d19c285b130c7a05d67c07319be96989b90a9d8df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Compressibility</topic><topic>Continuum modeling</topic><topic>Convergence</topic><topic>Equations of state</topic><topic>First principles</topic><topic>Gaussian process</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Mixtures</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Thermophysical properties</topic><topic>Thomson coefficient</topic><topic>Virial coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Richard S</creatorcontrib><creatorcontrib>Wheatley, Richard J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Richard S</au><au>Wheatley, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2022-06-16</date><risdate>2022</risdate><volume>58</volume><issue>49</issue><spage>6898</spage><epage>691</epage><pages>6898-691</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning ab initio calculations can be performed at higher accuracy. As an exemplar we compute the PES for all three-body cross interactions for CO 2 -Ar mixtures. From these we calculate the CO 2 -Ar virial coefficients up to 5th order. The resulting virial equation of state (EoS) is convergent for densities up to the critical density. Where convergent, the EoS makes accurate first-principles predictions for a range of thermophysical properties for CO 2 -Ar mixtures, including the compressibility factor, speed of sound and Joule-Thomson coefficient. Our method has great potential to make wide-ranging first-principles predictions for mixtures of comparably sized molecules. Such predictions can replace the need for expensive, laborious and repetitive experiments and inform the continuum models required for applications. Via a generally applicable method, we interpolate ab initio calculations of intermolecular interactions and produce successful first-principles predictions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35642644</pmid><doi>10.1039/d2cc01820a</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5530-8120</orcidid><orcidid>https://orcid.org/0000-0002-2096-7708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2022-06, Vol.58 (49), p.6898-691
issn 1359-7345
1364-548X
language eng
recordid cdi_pubmed_primary_35642644
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Carbon dioxide
Compressibility
Continuum modeling
Convergence
Equations of state
First principles
Gaussian process
Interpolation
Machine learning
Mixtures
Potential energy
Quantum chemistry
Thermophysical properties
Thomson coefficient
Virial coefficients
title Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20non-additive%20intermolecular%20potentials:%20quantum%20chemistry%20to%20first-principles%20predictions&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Graham,%20Richard%20S&rft.date=2022-06-16&rft.volume=58&rft.issue=49&rft.spage=6898&rft.epage=691&rft.pages=6898-691&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d2cc01820a&rft_dat=%3Cproquest_pubme%3E2677021454%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677021454&rft_id=info:pmid/35642644&rfr_iscdi=true