LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation
Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2022-01, Vol.30, p.1441-1451 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1451 |
---|---|
container_issue | |
container_start_page | 1441 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 30 |
creator | Averna, Alberto Barban, Federico Care, Marta Murphy, Maxwell D. Iandolo, Riccardo De Michieli, Lorenzo Nudo, Randolph J. Guggenmos, David J. Chiappalone, Michela |
description | Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders. |
doi_str_mv | 10.1109/TNSRE.2022.3177254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35604961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780254</ieee_id><doaj_id>oai_doaj_org_article_d18e73e84e0945ca9b55cff1f84d7806</doaj_id><sourcerecordid>2672806057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</originalsourceid><addsrcrecordid>eNpdUl1v0zAUjRATG4M_ABKKtBdeUmzHny9Io9qgUgWIbc-WY990rtK42Mmk8etx2q5iPNm-95yjc69PUbzDaIYxUp9uv9_8upoRRMisxkIQRl8UZ5gxWSGC0cvpXtOK1gSdFq9TWiOEBWfiVXFaM46o4vissMvrn-Vlb7rH5FMZ2vJLNL4vF_16jOByB9JwD4P_s3v4jelSedc7iKvg-1U570ICVy1D2GbOEI0NcfDWdOXN4DdjZwYf-jfFSZt58PZwnhd311e382_V8sfXxfxyWVmG-VBRQhvBJG-wQ0rWXGaP2EqgDeGc41ZIRcCB4hQcarnj1soGM5KrSlrn6vNisdd1waz1Nma38VEH4_WuEOJKm8ldB9phCaIGSQEpyqxRDWO2bXErqRMS8az1ea-1HZsNOAvTcN0z0eed3t_rVXjQimCe15wFPh4EYvg95i3qjU8Wus70EMak80ySEEzJBL34D7oOY8x_MqEEyXYQExlF9igbQ0oR2qMZjPSUB73Lg57yoA95yKQP_45xpDwFIAPe7wEeAI5tlXcw0f8CE-W6Aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806057</pqid></control><display><type>article</type><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</creator><creatorcontrib>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</creatorcontrib><description>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3177254</identifier><identifier>PMID: 35604961</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activity-dependent stimulation ; Amplitudes ; Biomedical signal processing ; Closed loops ; Connectivity ; Coupling ; Couplings ; Endothelin 1 ; Endothelins ; in vivo ; Injury analysis ; Ischemia ; Lesions ; local field potential ; micro-electrode arrays ; Microelectrodes ; Neural networks ; Neurological diseases ; phase amplitude coupling ; power envelope correlation ; Protocols ; Rats ; Recording ; Stimulation ; Urban areas</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1441-1451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</citedby><cites>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</cites><orcidid>0000-0002-5828-0282 ; 0000-0003-1427-5147 ; 0000-0002-7100-1639 ; 0000-0001-7158-3002 ; 0000-0001-9738-1281 ; 0000-0002-8559-2361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35604961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Barban, Federico</creatorcontrib><creatorcontrib>Care, Marta</creatorcontrib><creatorcontrib>Murphy, Maxwell D.</creatorcontrib><creatorcontrib>Iandolo, Riccardo</creatorcontrib><creatorcontrib>De Michieli, Lorenzo</creatorcontrib><creatorcontrib>Nudo, Randolph J.</creatorcontrib><creatorcontrib>Guggenmos, David J.</creatorcontrib><creatorcontrib>Chiappalone, Michela</creatorcontrib><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</description><subject>Activity-dependent stimulation</subject><subject>Amplitudes</subject><subject>Biomedical signal processing</subject><subject>Closed loops</subject><subject>Connectivity</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Endothelin 1</subject><subject>Endothelins</subject><subject>in vivo</subject><subject>Injury analysis</subject><subject>Ischemia</subject><subject>Lesions</subject><subject>local field potential</subject><subject>micro-electrode arrays</subject><subject>Microelectrodes</subject><subject>Neural networks</subject><subject>Neurological diseases</subject><subject>phase amplitude coupling</subject><subject>power envelope correlation</subject><subject>Protocols</subject><subject>Rats</subject><subject>Recording</subject><subject>Stimulation</subject><subject>Urban areas</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdUl1v0zAUjRATG4M_ABKKtBdeUmzHny9Io9qgUgWIbc-WY990rtK42Mmk8etx2q5iPNm-95yjc69PUbzDaIYxUp9uv9_8upoRRMisxkIQRl8UZ5gxWSGC0cvpXtOK1gSdFq9TWiOEBWfiVXFaM46o4vissMvrn-Vlb7rH5FMZ2vJLNL4vF_16jOByB9JwD4P_s3v4jelSedc7iKvg-1U570ICVy1D2GbOEI0NcfDWdOXN4DdjZwYf-jfFSZt58PZwnhd311e382_V8sfXxfxyWVmG-VBRQhvBJG-wQ0rWXGaP2EqgDeGc41ZIRcCB4hQcarnj1soGM5KrSlrn6vNisdd1waz1Nma38VEH4_WuEOJKm8ldB9phCaIGSQEpyqxRDWO2bXErqRMS8az1ea-1HZsNOAvTcN0z0eed3t_rVXjQimCe15wFPh4EYvg95i3qjU8Wus70EMak80ySEEzJBL34D7oOY8x_MqEEyXYQExlF9igbQ0oR2qMZjPSUB73Lg57yoA95yKQP_45xpDwFIAPe7wEeAI5tlXcw0f8CE-W6Aw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Averna, Alberto</creator><creator>Barban, Federico</creator><creator>Care, Marta</creator><creator>Murphy, Maxwell D.</creator><creator>Iandolo, Riccardo</creator><creator>De Michieli, Lorenzo</creator><creator>Nudo, Randolph J.</creator><creator>Guggenmos, David J.</creator><creator>Chiappalone, Michela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5828-0282</orcidid><orcidid>https://orcid.org/0000-0003-1427-5147</orcidid><orcidid>https://orcid.org/0000-0002-7100-1639</orcidid><orcidid>https://orcid.org/0000-0001-7158-3002</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-8559-2361</orcidid></search><sort><creationdate>20220101</creationdate><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><author>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity-dependent stimulation</topic><topic>Amplitudes</topic><topic>Biomedical signal processing</topic><topic>Closed loops</topic><topic>Connectivity</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Endothelin 1</topic><topic>Endothelins</topic><topic>in vivo</topic><topic>Injury analysis</topic><topic>Ischemia</topic><topic>Lesions</topic><topic>local field potential</topic><topic>micro-electrode arrays</topic><topic>Microelectrodes</topic><topic>Neural networks</topic><topic>Neurological diseases</topic><topic>phase amplitude coupling</topic><topic>power envelope correlation</topic><topic>Protocols</topic><topic>Rats</topic><topic>Recording</topic><topic>Stimulation</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Barban, Federico</creatorcontrib><creatorcontrib>Care, Marta</creatorcontrib><creatorcontrib>Murphy, Maxwell D.</creatorcontrib><creatorcontrib>Iandolo, Riccardo</creatorcontrib><creatorcontrib>De Michieli, Lorenzo</creatorcontrib><creatorcontrib>Nudo, Randolph J.</creatorcontrib><creatorcontrib>Guggenmos, David J.</creatorcontrib><creatorcontrib>Chiappalone, Michela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averna, Alberto</au><au>Barban, Federico</au><au>Care, Marta</au><au>Murphy, Maxwell D.</au><au>Iandolo, Riccardo</au><au>De Michieli, Lorenzo</au><au>Nudo, Randolph J.</au><au>Guggenmos, David J.</au><au>Chiappalone, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>30</volume><spage>1441</spage><epage>1451</epage><pages>1441-1451</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35604961</pmid><doi>10.1109/TNSRE.2022.3177254</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5828-0282</orcidid><orcidid>https://orcid.org/0000-0003-1427-5147</orcidid><orcidid>https://orcid.org/0000-0002-7100-1639</orcidid><orcidid>https://orcid.org/0000-0001-7158-3002</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-8559-2361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1441-1451 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_35604961 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Activity-dependent stimulation Amplitudes Biomedical signal processing Closed loops Connectivity Coupling Couplings Endothelin 1 Endothelins in vivo Injury analysis Ischemia Lesions local field potential micro-electrode arrays Microelectrodes Neural networks Neurological diseases phase amplitude coupling power envelope correlation Protocols Rats Recording Stimulation Urban areas |
title | LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LFP%20Analysis%20of%20Brain%20Injured%20Anesthetized%20Animals%20Undergoing%20Closed-Loop%20Intracortical%20Stimulation&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Averna,%20Alberto&rft.date=2022-01-01&rft.volume=30&rft.spage=1441&rft.epage=1451&rft.pages=1441-1451&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3177254&rft_dat=%3Cproquest_pubme%3E2672806057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806057&rft_id=info:pmid/35604961&rft_ieee_id=9780254&rft_doaj_id=oai_doaj_org_article_d18e73e84e0945ca9b55cff1f84d7806&rfr_iscdi=true |