LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation

Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022-01, Vol.30, p.1441-1451
Hauptverfasser: Averna, Alberto, Barban, Federico, Care, Marta, Murphy, Maxwell D., Iandolo, Riccardo, De Michieli, Lorenzo, Nudo, Randolph J., Guggenmos, David J., Chiappalone, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1451
container_issue
container_start_page 1441
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 30
creator Averna, Alberto
Barban, Federico
Care, Marta
Murphy, Maxwell D.
Iandolo, Riccardo
De Michieli, Lorenzo
Nudo, Randolph J.
Guggenmos, David J.
Chiappalone, Michela
description Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.
doi_str_mv 10.1109/TNSRE.2022.3177254
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35604961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780254</ieee_id><doaj_id>oai_doaj_org_article_d18e73e84e0945ca9b55cff1f84d7806</doaj_id><sourcerecordid>2672806057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</originalsourceid><addsrcrecordid>eNpdUl1v0zAUjRATG4M_ABKKtBdeUmzHny9Io9qgUgWIbc-WY990rtK42Mmk8etx2q5iPNm-95yjc69PUbzDaIYxUp9uv9_8upoRRMisxkIQRl8UZ5gxWSGC0cvpXtOK1gSdFq9TWiOEBWfiVXFaM46o4vissMvrn-Vlb7rH5FMZ2vJLNL4vF_16jOByB9JwD4P_s3v4jelSedc7iKvg-1U570ICVy1D2GbOEI0NcfDWdOXN4DdjZwYf-jfFSZt58PZwnhd311e382_V8sfXxfxyWVmG-VBRQhvBJG-wQ0rWXGaP2EqgDeGc41ZIRcCB4hQcarnj1soGM5KrSlrn6vNisdd1waz1Nma38VEH4_WuEOJKm8ldB9phCaIGSQEpyqxRDWO2bXErqRMS8az1ea-1HZsNOAvTcN0z0eed3t_rVXjQimCe15wFPh4EYvg95i3qjU8Wus70EMak80ySEEzJBL34D7oOY8x_MqEEyXYQExlF9igbQ0oR2qMZjPSUB73Lg57yoA95yKQP_45xpDwFIAPe7wEeAI5tlXcw0f8CE-W6Aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672806057</pqid></control><display><type>article</type><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</creator><creatorcontrib>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</creatorcontrib><description>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3177254</identifier><identifier>PMID: 35604961</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activity-dependent stimulation ; Amplitudes ; Biomedical signal processing ; Closed loops ; Connectivity ; Coupling ; Couplings ; Endothelin 1 ; Endothelins ; in vivo ; Injury analysis ; Ischemia ; Lesions ; local field potential ; micro-electrode arrays ; Microelectrodes ; Neural networks ; Neurological diseases ; phase amplitude coupling ; power envelope correlation ; Protocols ; Rats ; Recording ; Stimulation ; Urban areas</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1441-1451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</citedby><cites>FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</cites><orcidid>0000-0002-5828-0282 ; 0000-0003-1427-5147 ; 0000-0002-7100-1639 ; 0000-0001-7158-3002 ; 0000-0001-9738-1281 ; 0000-0002-8559-2361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35604961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Barban, Federico</creatorcontrib><creatorcontrib>Care, Marta</creatorcontrib><creatorcontrib>Murphy, Maxwell D.</creatorcontrib><creatorcontrib>Iandolo, Riccardo</creatorcontrib><creatorcontrib>De Michieli, Lorenzo</creatorcontrib><creatorcontrib>Nudo, Randolph J.</creatorcontrib><creatorcontrib>Guggenmos, David J.</creatorcontrib><creatorcontrib>Chiappalone, Michela</creatorcontrib><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</description><subject>Activity-dependent stimulation</subject><subject>Amplitudes</subject><subject>Biomedical signal processing</subject><subject>Closed loops</subject><subject>Connectivity</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Endothelin 1</subject><subject>Endothelins</subject><subject>in vivo</subject><subject>Injury analysis</subject><subject>Ischemia</subject><subject>Lesions</subject><subject>local field potential</subject><subject>micro-electrode arrays</subject><subject>Microelectrodes</subject><subject>Neural networks</subject><subject>Neurological diseases</subject><subject>phase amplitude coupling</subject><subject>power envelope correlation</subject><subject>Protocols</subject><subject>Rats</subject><subject>Recording</subject><subject>Stimulation</subject><subject>Urban areas</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdUl1v0zAUjRATG4M_ABKKtBdeUmzHny9Io9qgUgWIbc-WY990rtK42Mmk8etx2q5iPNm-95yjc69PUbzDaIYxUp9uv9_8upoRRMisxkIQRl8UZ5gxWSGC0cvpXtOK1gSdFq9TWiOEBWfiVXFaM46o4vissMvrn-Vlb7rH5FMZ2vJLNL4vF_16jOByB9JwD4P_s3v4jelSedc7iKvg-1U570ICVy1D2GbOEI0NcfDWdOXN4DdjZwYf-jfFSZt58PZwnhd311e382_V8sfXxfxyWVmG-VBRQhvBJG-wQ0rWXGaP2EqgDeGc41ZIRcCB4hQcarnj1soGM5KrSlrn6vNisdd1waz1Nma38VEH4_WuEOJKm8ldB9phCaIGSQEpyqxRDWO2bXErqRMS8az1ea-1HZsNOAvTcN0z0eed3t_rVXjQimCe15wFPh4EYvg95i3qjU8Wus70EMak80ySEEzJBL34D7oOY8x_MqEEyXYQExlF9igbQ0oR2qMZjPSUB73Lg57yoA95yKQP_45xpDwFIAPe7wEeAI5tlXcw0f8CE-W6Aw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Averna, Alberto</creator><creator>Barban, Federico</creator><creator>Care, Marta</creator><creator>Murphy, Maxwell D.</creator><creator>Iandolo, Riccardo</creator><creator>De Michieli, Lorenzo</creator><creator>Nudo, Randolph J.</creator><creator>Guggenmos, David J.</creator><creator>Chiappalone, Michela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5828-0282</orcidid><orcidid>https://orcid.org/0000-0003-1427-5147</orcidid><orcidid>https://orcid.org/0000-0002-7100-1639</orcidid><orcidid>https://orcid.org/0000-0001-7158-3002</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-8559-2361</orcidid></search><sort><creationdate>20220101</creationdate><title>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</title><author>Averna, Alberto ; Barban, Federico ; Care, Marta ; Murphy, Maxwell D. ; Iandolo, Riccardo ; De Michieli, Lorenzo ; Nudo, Randolph J. ; Guggenmos, David J. ; Chiappalone, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-424b7586b1d0983686041c8e4b26661f7892ede964ed0f6d6cc8b15292e98cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity-dependent stimulation</topic><topic>Amplitudes</topic><topic>Biomedical signal processing</topic><topic>Closed loops</topic><topic>Connectivity</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Endothelin 1</topic><topic>Endothelins</topic><topic>in vivo</topic><topic>Injury analysis</topic><topic>Ischemia</topic><topic>Lesions</topic><topic>local field potential</topic><topic>micro-electrode arrays</topic><topic>Microelectrodes</topic><topic>Neural networks</topic><topic>Neurological diseases</topic><topic>phase amplitude coupling</topic><topic>power envelope correlation</topic><topic>Protocols</topic><topic>Rats</topic><topic>Recording</topic><topic>Stimulation</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Barban, Federico</creatorcontrib><creatorcontrib>Care, Marta</creatorcontrib><creatorcontrib>Murphy, Maxwell D.</creatorcontrib><creatorcontrib>Iandolo, Riccardo</creatorcontrib><creatorcontrib>De Michieli, Lorenzo</creatorcontrib><creatorcontrib>Nudo, Randolph J.</creatorcontrib><creatorcontrib>Guggenmos, David J.</creatorcontrib><creatorcontrib>Chiappalone, Michela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averna, Alberto</au><au>Barban, Federico</au><au>Care, Marta</au><au>Murphy, Maxwell D.</au><au>Iandolo, Riccardo</au><au>De Michieli, Lorenzo</au><au>Nudo, Randolph J.</au><au>Guggenmos, David J.</au><au>Chiappalone, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>30</volume><spage>1441</spage><epage>1451</epage><pages>1441-1451</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35604961</pmid><doi>10.1109/TNSRE.2022.3177254</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5828-0282</orcidid><orcidid>https://orcid.org/0000-0003-1427-5147</orcidid><orcidid>https://orcid.org/0000-0002-7100-1639</orcidid><orcidid>https://orcid.org/0000-0001-7158-3002</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-8559-2361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2022-01, Vol.30, p.1441-1451
issn 1534-4320
1558-0210
language eng
recordid cdi_pubmed_primary_35604961
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Activity-dependent stimulation
Amplitudes
Biomedical signal processing
Closed loops
Connectivity
Coupling
Couplings
Endothelin 1
Endothelins
in vivo
Injury analysis
Ischemia
Lesions
local field potential
micro-electrode arrays
Microelectrodes
Neural networks
Neurological diseases
phase amplitude coupling
power envelope correlation
Protocols
Rats
Recording
Stimulation
Urban areas
title LFP Analysis of Brain Injured Anesthetized Animals Undergoing Closed-Loop Intracortical Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LFP%20Analysis%20of%20Brain%20Injured%20Anesthetized%20Animals%20Undergoing%20Closed-Loop%20Intracortical%20Stimulation&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Averna,%20Alberto&rft.date=2022-01-01&rft.volume=30&rft.spage=1441&rft.epage=1451&rft.pages=1441-1451&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3177254&rft_dat=%3Cproquest_pubme%3E2672806057%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672806057&rft_id=info:pmid/35604961&rft_ieee_id=9780254&rft_doaj_id=oai_doaj_org_article_d18e73e84e0945ca9b55cff1f84d7806&rfr_iscdi=true