Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis
Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2022-05, Vol.PP, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | PP |
creator | Karakasis, Paris A. Liavas, Athanasios P. Sidiropoulos, Nicholas D. Simos, Panagiotis G. Papadaki, Efrosini |
description | Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs). |
doi_str_mv | 10.1109/TIP.2022.3159125 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35588408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9778969</ieee_id><sourcerecordid>35588408</sourcerecordid><originalsourceid>FETCH-LOGICAL-i438-d292d33f63979b4c6a0a5afb19e092e7b007fe0c525ccf67a275d33ea8ea976b3</originalsourceid><addsrcrecordid>eNo9j1tLw0AUhBdRbK2-C4LsH9i612z2UYqXQosifS8nm5OyNU1KdqPUX2-w6tMMzDcDQ8i14FMhuLtbzV-nkks5VcI4Ic0JGQunBeNcy9PBc2OZFdqNyEWMW86FNiI7JyNlTJ5rno_JdtnXKbDYF1v0iSaI76zDGhKWtFq-zWkJCei-az3GGJoN_QhAgabPlsUEG6QbbLCDOnwNBQ9N2wQPNfVt97MS2oZCA_UhhnhJziqoI1796oSsHh9Ws2e2eHmaz-4XLGiVs1I6WSpVZcpZV2ifAQcDVSEccifRFpzbCrk30nhfZRakNQOPkCM4mxVqQm6Ps_u-2GG53ndhB91h_fd5AG6OQEDE_9hZm7vMqW9LrWPo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Karakasis, Paris A. ; Liavas, Athanasios P. ; Sidiropoulos, Nicholas D. ; Simos, Panagiotis G. ; Papadaki, Efrosini</creator><creatorcontrib>Karakasis, Paris A. ; Liavas, Athanasios P. ; Sidiropoulos, Nicholas D. ; Simos, Panagiotis G. ; Papadaki, Efrosini</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs).</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3159125</identifier><identifier>PMID: 35588408</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Compounds ; Data models ; Data processing ; Estimation ; fMRI ; Functional magnetic resonance imaging ; generalized CCA ; MAX-VAR ; Signal to noise ratio ; Task analysis</subject><ispartof>IEEE transactions on image processing, 2022-05, Vol.PP, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9778969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9778969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35588408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karakasis, Paris A.</creatorcontrib><creatorcontrib>Liavas, Athanasios P.</creatorcontrib><creatorcontrib>Sidiropoulos, Nicholas D.</creatorcontrib><creatorcontrib>Simos, Panagiotis G.</creatorcontrib><creatorcontrib>Papadaki, Efrosini</creatorcontrib><title>Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs).</description><subject>Compounds</subject><subject>Data models</subject><subject>Data processing</subject><subject>Estimation</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>generalized CCA</subject><subject>MAX-VAR</subject><subject>Signal to noise ratio</subject><subject>Task analysis</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j1tLw0AUhBdRbK2-C4LsH9i612z2UYqXQosifS8nm5OyNU1KdqPUX2-w6tMMzDcDQ8i14FMhuLtbzV-nkks5VcI4Ic0JGQunBeNcy9PBc2OZFdqNyEWMW86FNiI7JyNlTJ5rno_JdtnXKbDYF1v0iSaI76zDGhKWtFq-zWkJCei-az3GGJoN_QhAgabPlsUEG6QbbLCDOnwNBQ9N2wQPNfVt97MS2oZCA_UhhnhJziqoI1796oSsHh9Ws2e2eHmaz-4XLGiVs1I6WSpVZcpZV2ifAQcDVSEccifRFpzbCrk30nhfZRakNQOPkCM4mxVqQm6Ps_u-2GG53ndhB91h_fd5AG6OQEDE_9hZm7vMqW9LrWPo</recordid><startdate>20220519</startdate><enddate>20220519</enddate><creator>Karakasis, Paris A.</creator><creator>Liavas, Athanasios P.</creator><creator>Sidiropoulos, Nicholas D.</creator><creator>Simos, Panagiotis G.</creator><creator>Papadaki, Efrosini</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope></search><sort><creationdate>20220519</creationdate><title>Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis</title><author>Karakasis, Paris A. ; Liavas, Athanasios P. ; Sidiropoulos, Nicholas D. ; Simos, Panagiotis G. ; Papadaki, Efrosini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i438-d292d33f63979b4c6a0a5afb19e092e7b007fe0c525ccf67a275d33ea8ea976b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compounds</topic><topic>Data models</topic><topic>Data processing</topic><topic>Estimation</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>generalized CCA</topic><topic>MAX-VAR</topic><topic>Signal to noise ratio</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karakasis, Paris A.</creatorcontrib><creatorcontrib>Liavas, Athanasios P.</creatorcontrib><creatorcontrib>Sidiropoulos, Nicholas D.</creatorcontrib><creatorcontrib>Simos, Panagiotis G.</creatorcontrib><creatorcontrib>Papadaki, Efrosini</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karakasis, Paris A.</au><au>Liavas, Athanasios P.</au><au>Sidiropoulos, Nicholas D.</au><au>Simos, Panagiotis G.</au><au>Papadaki, Efrosini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022-05-19</date><risdate>2022</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35588408</pmid><doi>10.1109/TIP.2022.3159125</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2022-05, Vol.PP, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_35588408 |
source | IEEE Electronic Library (IEL) |
subjects | Compounds Data models Data processing Estimation fMRI Functional magnetic resonance imaging generalized CCA MAX-VAR Signal to noise ratio Task analysis |
title | Multi-subject task-related fMRI data processing via a two-stage generalized canonical correlation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-subject%20task-related%20fMRI%20data%20processing%20via%20a%20two-stage%20generalized%20canonical%20correlation%20analysis&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Karakasis,%20Paris%20A.&rft.date=2022-05-19&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3159125&rft_dat=%3Cpubmed_RIE%3E35588408%3C/pubmed_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35588408&rft_ieee_id=9778969&rfr_iscdi=true |