Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits

This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer assisted surgery (Abingdon, England) England), 2022-12, Vol.27 (1), p.15-26
Hauptverfasser: Song, Jinzhen, Yin, Hao, Huang, Jianbo, Wu, Zhenru, Wei, Chenchen, Qiu, Tingting, Luo, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 15
container_title Computer assisted surgery (Abingdon, England)
container_volume 27
creator Song, Jinzhen
Yin, Hao
Huang, Jianbo
Wu, Zhenru
Wei, Chenchen
Qiu, Tingting
Luo, Yan
description This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.
doi_str_mv 10.1080/24699322.2022.2063760
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35559651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb07656f22d74864978f7c13686c75dc</doaj_id><sourcerecordid>2753887625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2abe8daa5bed2e98766e9ad12cc6db90f666735626d034066b72e5cf007a27bb3</originalsourceid><addsrcrecordid>eNp9kUtuFDEQhlsIRKKQI4AssWEzwXa3y92sQCGBSJHYwNoqvyKPuu3B7plobsNZOBnuzCRCLNj4Uf7rd1V9TfOa0QtGe_qedzAMLecXnD4s0Eqgz5rTJb5aHp7_dT5pzktZU0oZMMYFvGxOWiHEAIKdNuNn5zZkdJhjiHfEp0ywFFfKchvDzmXig86phEI0FmdJigRN2pY5GBJTHEOsyWHekwk35QPBSEL8_WsXdomUeWv3JHmSUeswl1fNC49jcefH_az5cX31_fLr6vbbl5vLT7crI6icVxy16y2i0M5yN_QSwA1oGTcGrB6oBwDZCuBgadtRAC25E8ZTKpFLrduz5ubgaxOu1SaHCfNeJQzqIZDyncJc6x-d8ppKEOA5t7LroRtk76VhLfRgpLCmer07eG1y-rl1ZVZTKMaNI0ZXp6A4QNdXAKyt0rf_SNdpm2PtVHEp2r42wkVViYPK1KmW7PxTgYyqha56pKsWuupIt-a9Obpv9eTsU9Yjyyr4eBCEWDFOeJ_yaNWM-zFlnzGaUFT7_z_-AIbqs8c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753887625</pqid></control><display><type>article</type><title>Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><creator>Song, Jinzhen ; Yin, Hao ; Huang, Jianbo ; Wu, Zhenru ; Wei, Chenchen ; Qiu, Tingting ; Luo, Yan</creator><creatorcontrib>Song, Jinzhen ; Yin, Hao ; Huang, Jianbo ; Wu, Zhenru ; Wei, Chenchen ; Qiu, Tingting ; Luo, Yan</creatorcontrib><description>This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.</description><identifier>ISSN: 2469-9322</identifier><identifier>EISSN: 2469-9322</identifier><identifier>DOI: 10.1080/24699322.2022.2063760</identifier><identifier>PMID: 35559651</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>acoustic nonlinearity ; Acoustics ; Animals ; Deep Learning ; Fibrosis ; Humans ; Liver ; Liver cirrhosis ; Liver Cirrhosis - diagnostic imaging ; Liver Cirrhosis - pathology ; liver fibrosis ; Neural Networks, Computer ; Rabbits ; Support vector machines ; ultrasound</subject><ispartof>Computer assisted surgery (Abingdon, England), 2022-12, Vol.27 (1), p.15-26</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2abe8daa5bed2e98766e9ad12cc6db90f666735626d034066b72e5cf007a27bb3</citedby><cites>FETCH-LOGICAL-c507t-2abe8daa5bed2e98766e9ad12cc6db90f666735626d034066b72e5cf007a27bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/24699322.2022.2063760$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/24699322.2022.2063760$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27481,27903,27904,59119,59120</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35559651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Jinzhen</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Wei, Chenchen</creatorcontrib><creatorcontrib>Qiu, Tingting</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><title>Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits</title><title>Computer assisted surgery (Abingdon, England)</title><addtitle>Comput Assist Surg (Abingdon)</addtitle><description>This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.</description><subject>acoustic nonlinearity</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Deep Learning</subject><subject>Fibrosis</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - diagnostic imaging</subject><subject>Liver Cirrhosis - pathology</subject><subject>liver fibrosis</subject><subject>Neural Networks, Computer</subject><subject>Rabbits</subject><subject>Support vector machines</subject><subject>ultrasound</subject><issn>2469-9322</issn><issn>2469-9322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtuFDEQhlsIRKKQI4AssWEzwXa3y92sQCGBSJHYwNoqvyKPuu3B7plobsNZOBnuzCRCLNj4Uf7rd1V9TfOa0QtGe_qedzAMLecXnD4s0Eqgz5rTJb5aHp7_dT5pzktZU0oZMMYFvGxOWiHEAIKdNuNn5zZkdJhjiHfEp0ywFFfKchvDzmXig86phEI0FmdJigRN2pY5GBJTHEOsyWHekwk35QPBSEL8_WsXdomUeWv3JHmSUeswl1fNC49jcefH_az5cX31_fLr6vbbl5vLT7crI6icVxy16y2i0M5yN_QSwA1oGTcGrB6oBwDZCuBgadtRAC25E8ZTKpFLrduz5ubgaxOu1SaHCfNeJQzqIZDyncJc6x-d8ppKEOA5t7LroRtk76VhLfRgpLCmer07eG1y-rl1ZVZTKMaNI0ZXp6A4QNdXAKyt0rf_SNdpm2PtVHEp2r42wkVViYPK1KmW7PxTgYyqha56pKsWuupIt-a9Obpv9eTsU9Yjyyr4eBCEWDFOeJ_yaNWM-zFlnzGaUFT7_z_-AIbqs8c</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Song, Jinzhen</creator><creator>Yin, Hao</creator><creator>Huang, Jianbo</creator><creator>Wu, Zhenru</creator><creator>Wei, Chenchen</creator><creator>Qiu, Tingting</creator><creator>Luo, Yan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>202212</creationdate><title>Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits</title><author>Song, Jinzhen ; Yin, Hao ; Huang, Jianbo ; Wu, Zhenru ; Wei, Chenchen ; Qiu, Tingting ; Luo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2abe8daa5bed2e98766e9ad12cc6db90f666735626d034066b72e5cf007a27bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>acoustic nonlinearity</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Deep Learning</topic><topic>Fibrosis</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - diagnostic imaging</topic><topic>Liver Cirrhosis - pathology</topic><topic>liver fibrosis</topic><topic>Neural Networks, Computer</topic><topic>Rabbits</topic><topic>Support vector machines</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jinzhen</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Huang, Jianbo</creatorcontrib><creatorcontrib>Wu, Zhenru</creatorcontrib><creatorcontrib>Wei, Chenchen</creatorcontrib><creatorcontrib>Qiu, Tingting</creatorcontrib><creatorcontrib>Luo, Yan</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computer assisted surgery (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jinzhen</au><au>Yin, Hao</au><au>Huang, Jianbo</au><au>Wu, Zhenru</au><au>Wei, Chenchen</au><au>Qiu, Tingting</au><au>Luo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits</atitle><jtitle>Computer assisted surgery (Abingdon, England)</jtitle><addtitle>Comput Assist Surg (Abingdon)</addtitle><date>2022-12</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>2469-9322</issn><eissn>2469-9322</eissn><abstract>This study aimed to assess liver fibrosis in rabbits by deep learning models based on acoustic nonlinearity maps. Injection of carbon tetrachloride was used to induce liver fibrosis. Acoustic nonlinearity maps, which were built by data of echo signals, were used as input data for deep learning model. Convolutional neural network (CNN), CNN combined with support vector machine (SVM), CNN combined with random forest and CNN combined with logistic regression were used as deep learning model. Nested 10-fold cross-validation was used to search hyperparameters and evaluate performance of models. Histologic examination of liver specimens of the rabbits was performed to evaluate the fibrosis stage. Receiver operator characteristic curve and area under curve (AUC) were used for estimating the probability of the correct prediction of liver fibrosis stages. A total of 600 acoustic nonlinearity maps were used. Model of CNN combined with SVM demonstrated the best diagnostic performance compared with all other methods for diagnosis of significant fibrosis (≥F2, AUC = 0.82), advanced fibrosis (≥F3, AUC = 0.88) and cirrhosis (F4, AUC = 0.90). Model of CNN showed the second highest AUCs. The deep learning model based on acoustic nonlinearity maps demonstrated potential for evaluation of liver fibrosis.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35559651</pmid><doi>10.1080/24699322.2022.2063760</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9322
ispartof Computer assisted surgery (Abingdon, England), 2022-12, Vol.27 (1), p.15-26
issn 2469-9322
2469-9322
language eng
recordid cdi_pubmed_primary_35559651
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals
subjects acoustic nonlinearity
Acoustics
Animals
Deep Learning
Fibrosis
Humans
Liver
Liver cirrhosis
Liver Cirrhosis - diagnostic imaging
Liver Cirrhosis - pathology
liver fibrosis
Neural Networks, Computer
Rabbits
Support vector machines
ultrasound
title Deep learning for assessing liver fibrosis based on acoustic nonlinearity maps: an in vivo study of rabbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20assessing%20liver%20fibrosis%20based%20on%20acoustic%20nonlinearity%20maps:%20an%20in%C2%A0vivo%20study%20of%20rabbits&rft.jtitle=Computer%20assisted%20surgery%20(Abingdon,%20England)&rft.au=Song,%20Jinzhen&rft.date=2022-12&rft.volume=27&rft.issue=1&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=2469-9322&rft.eissn=2469-9322&rft_id=info:doi/10.1080/24699322.2022.2063760&rft_dat=%3Cproquest_pubme%3E2753887625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753887625&rft_id=info:pmid/35559651&rft_doaj_id=oai_doaj_org_article_fb07656f22d74864978f7c13686c75dc&rfr_iscdi=true