New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces

Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydroph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-11, Vol.1 (65), p.39854-39869
Hauptverfasser: Gonçalves Dias, Leonardo Francisco, Stamboroski, Stephani, Noeske, Michael, Salz, Dirk, Rischka, Klaus, Pereira, Renata, Mainardi, Maria do Carmo, Cardoso, Marina Honorato, Wiesing, Martin, Bronze-Uhle, Erika Soares, Esteves Lins, Rodrigo Barros, Lisboa-Filho, Paulo Noronha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39869
container_issue 65
container_start_page 39854
container_title RSC advances
container_volume 1
creator Gonçalves Dias, Leonardo Francisco
Stamboroski, Stephani
Noeske, Michael
Salz, Dirk
Rischka, Klaus
Pereira, Renata
Mainardi, Maria do Carmo
Cardoso, Marina Honorato
Wiesing, Martin
Bronze-Uhle, Erika Soares
Esteves Lins, Rodrigo Barros
Lisboa-Filho, Paulo Noronha
description Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid ( ODPA ) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride ( DMOAP ) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA , an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions. Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.
doi_str_mv 10.1039/d0ra06511k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35558137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456826480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</originalsourceid><addsrcrecordid>eNp9ks1rFTEUxUNR2lK76b4ScSPCq_mezEYo9ROLgth1yGRuXlMzk2kyU_G_N_bV1-rCcCGB8-NwwrkIHVFyQglvX_UkW6Ikpd930D4jQq0YUe2jB-89dFjKFamnYkzRXbTHpZSa8mYfrT_DD9zDbEMsOHlsS4Ghi2Fc4y4k6-ZwA9iHOBTscxpwH8oEuYQ0bvBhugx1YnB4SBHcEqEKI57DbMdgcVmytw7KE_TY21jg8O4-QBfv3n47-7A6__L-49np-coJKeZVx5nquQPPPadSWWiFc545YoVkvCNaSCWJcoL3lLeyA0FpoztHuCVSOcYP0OuN77R0A_QOxjnbaKYcBpt_mmSD-VsZw6VZpxvTEq1VI6rBizuDnK4XKLMZQnEQox0hLcUwpUSjdSN0RZ__g16lJY_1e4bVnJopoUmlXm4ol1MpGfw2DCXmd4XmDfl6elvhpwo_fRh_i_4prALHGyAXt1Xvd6Dqz_6nm6n3_BeOAq0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456826480</pqid></control><display><type>article</type><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</creator><creatorcontrib>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</creatorcontrib><description>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid ( ODPA ) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride ( DMOAP ) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA , an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions. Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra06511k</identifier><identifier>PMID: 35558137</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ammonium chloride ; Aqueous environments ; Atomic force microscopy ; Biomedical materials ; Chemistry ; Contact angle ; Contact potentials ; E coli ; Heat treatment ; Material properties ; Photoelectrons ; Substrates ; Surface properties ; Thin films ; X ray photoelectron spectroscopy ; Zeta potential</subject><ispartof>RSC advances, 2020-11, Vol.1 (65), p.39854-39869</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</citedby><cites>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</cites><orcidid>0000-0001-7288-5424 ; 0000-0002-1921-1727 ; 0000-0003-3427-4037 ; 0000-0002-8400-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35558137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonçalves Dias, Leonardo Francisco</creatorcontrib><creatorcontrib>Stamboroski, Stephani</creatorcontrib><creatorcontrib>Noeske, Michael</creatorcontrib><creatorcontrib>Salz, Dirk</creatorcontrib><creatorcontrib>Rischka, Klaus</creatorcontrib><creatorcontrib>Pereira, Renata</creatorcontrib><creatorcontrib>Mainardi, Maria do Carmo</creatorcontrib><creatorcontrib>Cardoso, Marina Honorato</creatorcontrib><creatorcontrib>Wiesing, Martin</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Esteves Lins, Rodrigo Barros</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid ( ODPA ) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride ( DMOAP ) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA , an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions. Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</description><subject>Ammonium chloride</subject><subject>Aqueous environments</subject><subject>Atomic force microscopy</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Contact angle</subject><subject>Contact potentials</subject><subject>E coli</subject><subject>Heat treatment</subject><subject>Material properties</subject><subject>Photoelectrons</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zeta potential</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ks1rFTEUxUNR2lK76b4ScSPCq_mezEYo9ROLgth1yGRuXlMzk2kyU_G_N_bV1-rCcCGB8-NwwrkIHVFyQglvX_UkW6Ikpd930D4jQq0YUe2jB-89dFjKFamnYkzRXbTHpZSa8mYfrT_DD9zDbEMsOHlsS4Ghi2Fc4y4k6-ZwA9iHOBTscxpwH8oEuYQ0bvBhugx1YnB4SBHcEqEKI57DbMdgcVmytw7KE_TY21jg8O4-QBfv3n47-7A6__L-49np-coJKeZVx5nquQPPPadSWWiFc545YoVkvCNaSCWJcoL3lLeyA0FpoztHuCVSOcYP0OuN77R0A_QOxjnbaKYcBpt_mmSD-VsZw6VZpxvTEq1VI6rBizuDnK4XKLMZQnEQox0hLcUwpUSjdSN0RZ__g16lJY_1e4bVnJopoUmlXm4ol1MpGfw2DCXmd4XmDfl6elvhpwo_fRh_i_4prALHGyAXt1Xvd6Dqz_6nm6n3_BeOAq0-</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Gonçalves Dias, Leonardo Francisco</creator><creator>Stamboroski, Stephani</creator><creator>Noeske, Michael</creator><creator>Salz, Dirk</creator><creator>Rischka, Klaus</creator><creator>Pereira, Renata</creator><creator>Mainardi, Maria do Carmo</creator><creator>Cardoso, Marina Honorato</creator><creator>Wiesing, Martin</creator><creator>Bronze-Uhle, Erika Soares</creator><creator>Esteves Lins, Rodrigo Barros</creator><creator>Lisboa-Filho, Paulo Noronha</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7288-5424</orcidid><orcidid>https://orcid.org/0000-0002-1921-1727</orcidid><orcidid>https://orcid.org/0000-0003-3427-4037</orcidid><orcidid>https://orcid.org/0000-0002-8400-7909</orcidid></search><sort><creationdate>20201102</creationdate><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><author>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium chloride</topic><topic>Aqueous environments</topic><topic>Atomic force microscopy</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Contact angle</topic><topic>Contact potentials</topic><topic>E coli</topic><topic>Heat treatment</topic><topic>Material properties</topic><topic>Photoelectrons</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves Dias, Leonardo Francisco</creatorcontrib><creatorcontrib>Stamboroski, Stephani</creatorcontrib><creatorcontrib>Noeske, Michael</creatorcontrib><creatorcontrib>Salz, Dirk</creatorcontrib><creatorcontrib>Rischka, Klaus</creatorcontrib><creatorcontrib>Pereira, Renata</creatorcontrib><creatorcontrib>Mainardi, Maria do Carmo</creatorcontrib><creatorcontrib>Cardoso, Marina Honorato</creatorcontrib><creatorcontrib>Wiesing, Martin</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Esteves Lins, Rodrigo Barros</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves Dias, Leonardo Francisco</au><au>Stamboroski, Stephani</au><au>Noeske, Michael</au><au>Salz, Dirk</au><au>Rischka, Klaus</au><au>Pereira, Renata</au><au>Mainardi, Maria do Carmo</au><au>Cardoso, Marina Honorato</au><au>Wiesing, Martin</au><au>Bronze-Uhle, Erika Soares</au><au>Esteves Lins, Rodrigo Barros</au><au>Lisboa-Filho, Paulo Noronha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-11-02</date><risdate>2020</risdate><volume>1</volume><issue>65</issue><spage>39854</spage><epage>39869</epage><pages>39854-39869</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid ( ODPA ) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride ( DMOAP ) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using E. coli and S. mutants to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of DMOAP or ODPA , an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from ODPA on titania substrates is considerably stronger and more stable than that observed for DMOAP films. Heat treatment strongly affects DMOAP layers. Furthermore, DMOAP layers are not stable under biological conditions. Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35558137</pmid><doi>10.1039/d0ra06511k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7288-5424</orcidid><orcidid>https://orcid.org/0000-0002-1921-1727</orcidid><orcidid>https://orcid.org/0000-0003-3427-4037</orcidid><orcidid>https://orcid.org/0000-0002-8400-7909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-11, Vol.1 (65), p.39854-39869
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35558137
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Ammonium chloride
Aqueous environments
Atomic force microscopy
Biomedical materials
Chemistry
Contact angle
Contact potentials
E coli
Heat treatment
Material properties
Photoelectrons
Substrates
Surface properties
Thin films
X ray photoelectron spectroscopy
Zeta potential
title New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20details%20of%20assembling%20bioactive%20films%20from%20dispersions%20of%20amphiphilic%20molecules%20on%20titania%20surfaces&rft.jtitle=RSC%20advances&rft.au=Gon%C3%A7alves%20Dias,%20Leonardo%20Francisco&rft.date=2020-11-02&rft.volume=1&rft.issue=65&rft.spage=39854&rft.epage=39869&rft.pages=39854-39869&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra06511k&rft_dat=%3Cproquest_pubme%3E2456826480%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456826480&rft_id=info:pmid/35558137&rfr_iscdi=true