New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces
Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydroph...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-11, Vol.1 (65), p.39854-39869 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39869 |
---|---|
container_issue | 65 |
container_start_page | 39854 |
container_title | RSC advances |
container_volume | 1 |
creator | Gonçalves Dias, Leonardo Francisco Stamboroski, Stephani Noeske, Michael Salz, Dirk Rischka, Klaus Pereira, Renata Mainardi, Maria do Carmo Cardoso, Marina Honorato Wiesing, Martin Bronze-Uhle, Erika Soares Esteves Lins, Rodrigo Barros Lisboa-Filho, Paulo Noronha |
description | Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (
ODPA
) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (
DMOAP
) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using
E. coli
and
S. mutants
to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of
DMOAP
or
ODPA
, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from
ODPA
on titania substrates is considerably stronger and more stable than that observed for
DMOAP
films. Heat treatment strongly affects
DMOAP
layers. Furthermore,
DMOAP
layers are not stable under biological conditions.
Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity. |
doi_str_mv | 10.1039/d0ra06511k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35558137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456826480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</originalsourceid><addsrcrecordid>eNp9ks1rFTEUxUNR2lK76b4ScSPCq_mezEYo9ROLgth1yGRuXlMzk2kyU_G_N_bV1-rCcCGB8-NwwrkIHVFyQglvX_UkW6Ikpd930D4jQq0YUe2jB-89dFjKFamnYkzRXbTHpZSa8mYfrT_DD9zDbEMsOHlsS4Ghi2Fc4y4k6-ZwA9iHOBTscxpwH8oEuYQ0bvBhugx1YnB4SBHcEqEKI57DbMdgcVmytw7KE_TY21jg8O4-QBfv3n47-7A6__L-49np-coJKeZVx5nquQPPPadSWWiFc545YoVkvCNaSCWJcoL3lLeyA0FpoztHuCVSOcYP0OuN77R0A_QOxjnbaKYcBpt_mmSD-VsZw6VZpxvTEq1VI6rBizuDnK4XKLMZQnEQox0hLcUwpUSjdSN0RZ__g16lJY_1e4bVnJopoUmlXm4ol1MpGfw2DCXmd4XmDfl6elvhpwo_fRh_i_4prALHGyAXt1Xvd6Dqz_6nm6n3_BeOAq0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456826480</pqid></control><display><type>article</type><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</creator><creatorcontrib>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</creatorcontrib><description>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (
ODPA
) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (
DMOAP
) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using
E. coli
and
S. mutants
to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of
DMOAP
or
ODPA
, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from
ODPA
on titania substrates is considerably stronger and more stable than that observed for
DMOAP
films. Heat treatment strongly affects
DMOAP
layers. Furthermore,
DMOAP
layers are not stable under biological conditions.
Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra06511k</identifier><identifier>PMID: 35558137</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ammonium chloride ; Aqueous environments ; Atomic force microscopy ; Biomedical materials ; Chemistry ; Contact angle ; Contact potentials ; E coli ; Heat treatment ; Material properties ; Photoelectrons ; Substrates ; Surface properties ; Thin films ; X ray photoelectron spectroscopy ; Zeta potential</subject><ispartof>RSC advances, 2020-11, Vol.1 (65), p.39854-39869</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</citedby><cites>FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</cites><orcidid>0000-0001-7288-5424 ; 0000-0002-1921-1727 ; 0000-0003-3427-4037 ; 0000-0002-8400-7909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35558137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonçalves Dias, Leonardo Francisco</creatorcontrib><creatorcontrib>Stamboroski, Stephani</creatorcontrib><creatorcontrib>Noeske, Michael</creatorcontrib><creatorcontrib>Salz, Dirk</creatorcontrib><creatorcontrib>Rischka, Klaus</creatorcontrib><creatorcontrib>Pereira, Renata</creatorcontrib><creatorcontrib>Mainardi, Maria do Carmo</creatorcontrib><creatorcontrib>Cardoso, Marina Honorato</creatorcontrib><creatorcontrib>Wiesing, Martin</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Esteves Lins, Rodrigo Barros</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (
ODPA
) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (
DMOAP
) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using
E. coli
and
S. mutants
to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of
DMOAP
or
ODPA
, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from
ODPA
on titania substrates is considerably stronger and more stable than that observed for
DMOAP
films. Heat treatment strongly affects
DMOAP
layers. Furthermore,
DMOAP
layers are not stable under biological conditions.
Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</description><subject>Ammonium chloride</subject><subject>Aqueous environments</subject><subject>Atomic force microscopy</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Contact angle</subject><subject>Contact potentials</subject><subject>E coli</subject><subject>Heat treatment</subject><subject>Material properties</subject><subject>Photoelectrons</subject><subject>Substrates</subject><subject>Surface properties</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zeta potential</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ks1rFTEUxUNR2lK76b4ScSPCq_mezEYo9ROLgth1yGRuXlMzk2kyU_G_N_bV1-rCcCGB8-NwwrkIHVFyQglvX_UkW6Ikpd930D4jQq0YUe2jB-89dFjKFamnYkzRXbTHpZSa8mYfrT_DD9zDbEMsOHlsS4Ghi2Fc4y4k6-ZwA9iHOBTscxpwH8oEuYQ0bvBhugx1YnB4SBHcEqEKI57DbMdgcVmytw7KE_TY21jg8O4-QBfv3n47-7A6__L-49np-coJKeZVx5nquQPPPadSWWiFc545YoVkvCNaSCWJcoL3lLeyA0FpoztHuCVSOcYP0OuN77R0A_QOxjnbaKYcBpt_mmSD-VsZw6VZpxvTEq1VI6rBizuDnK4XKLMZQnEQox0hLcUwpUSjdSN0RZ__g16lJY_1e4bVnJopoUmlXm4ol1MpGfw2DCXmd4XmDfl6elvhpwo_fRh_i_4prALHGyAXt1Xvd6Dqz_6nm6n3_BeOAq0-</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Gonçalves Dias, Leonardo Francisco</creator><creator>Stamboroski, Stephani</creator><creator>Noeske, Michael</creator><creator>Salz, Dirk</creator><creator>Rischka, Klaus</creator><creator>Pereira, Renata</creator><creator>Mainardi, Maria do Carmo</creator><creator>Cardoso, Marina Honorato</creator><creator>Wiesing, Martin</creator><creator>Bronze-Uhle, Erika Soares</creator><creator>Esteves Lins, Rodrigo Barros</creator><creator>Lisboa-Filho, Paulo Noronha</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7288-5424</orcidid><orcidid>https://orcid.org/0000-0002-1921-1727</orcidid><orcidid>https://orcid.org/0000-0003-3427-4037</orcidid><orcidid>https://orcid.org/0000-0002-8400-7909</orcidid></search><sort><creationdate>20201102</creationdate><title>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</title><author>Gonçalves Dias, Leonardo Francisco ; Stamboroski, Stephani ; Noeske, Michael ; Salz, Dirk ; Rischka, Klaus ; Pereira, Renata ; Mainardi, Maria do Carmo ; Cardoso, Marina Honorato ; Wiesing, Martin ; Bronze-Uhle, Erika Soares ; Esteves Lins, Rodrigo Barros ; Lisboa-Filho, Paulo Noronha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-b326d3cef3f3156ae94ccf2c0a4523b08456506c43d1395be41178bc03a056c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium chloride</topic><topic>Aqueous environments</topic><topic>Atomic force microscopy</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Contact angle</topic><topic>Contact potentials</topic><topic>E coli</topic><topic>Heat treatment</topic><topic>Material properties</topic><topic>Photoelectrons</topic><topic>Substrates</topic><topic>Surface properties</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves Dias, Leonardo Francisco</creatorcontrib><creatorcontrib>Stamboroski, Stephani</creatorcontrib><creatorcontrib>Noeske, Michael</creatorcontrib><creatorcontrib>Salz, Dirk</creatorcontrib><creatorcontrib>Rischka, Klaus</creatorcontrib><creatorcontrib>Pereira, Renata</creatorcontrib><creatorcontrib>Mainardi, Maria do Carmo</creatorcontrib><creatorcontrib>Cardoso, Marina Honorato</creatorcontrib><creatorcontrib>Wiesing, Martin</creatorcontrib><creatorcontrib>Bronze-Uhle, Erika Soares</creatorcontrib><creatorcontrib>Esteves Lins, Rodrigo Barros</creatorcontrib><creatorcontrib>Lisboa-Filho, Paulo Noronha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves Dias, Leonardo Francisco</au><au>Stamboroski, Stephani</au><au>Noeske, Michael</au><au>Salz, Dirk</au><au>Rischka, Klaus</au><au>Pereira, Renata</au><au>Mainardi, Maria do Carmo</au><au>Cardoso, Marina Honorato</au><au>Wiesing, Martin</au><au>Bronze-Uhle, Erika Soares</au><au>Esteves Lins, Rodrigo Barros</au><au>Lisboa-Filho, Paulo Noronha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-11-02</date><risdate>2020</risdate><volume>1</volume><issue>65</issue><spage>39854</spage><epage>39869</epage><pages>39854-39869</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Tailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (
ODPA
) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (
DMOAP
) layers were adsorbed onto smooth titania surfaces. Then the films were studied by atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), and their interactions with aqueous environments were characterized by contact angle and zeta potential measurements. In addition, antibacterial assays were performed using
E. coli
and
S. mutants
to reveal the antibacterial properties effected by the surface modification. Immediately after sputter deposition, titania was hydrophilic; however, after air storage and adsorption of
DMOAP
or
ODPA
, an increase in the water contact angle was observed. XPS investigations after layer formation and after antibacterial tests revealed that the attachment of layers assembled from
ODPA
on titania substrates is considerably stronger and more stable than that observed for
DMOAP
films. Heat treatment strongly affects
DMOAP
layers. Furthermore,
DMOAP
layers are not stable under biological conditions.
Structure-property relationship of amphiphilic molecules on smooth substrates was explored through a multi-step approach and its influence on biological activity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35558137</pmid><doi>10.1039/d0ra06511k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7288-5424</orcidid><orcidid>https://orcid.org/0000-0002-1921-1727</orcidid><orcidid>https://orcid.org/0000-0003-3427-4037</orcidid><orcidid>https://orcid.org/0000-0002-8400-7909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-11, Vol.1 (65), p.39854-39869 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35558137 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Ammonium chloride Aqueous environments Atomic force microscopy Biomedical materials Chemistry Contact angle Contact potentials E coli Heat treatment Material properties Photoelectrons Substrates Surface properties Thin films X ray photoelectron spectroscopy Zeta potential |
title | New details of assembling bioactive films from dispersions of amphiphilic molecules on titania surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20details%20of%20assembling%20bioactive%20films%20from%20dispersions%20of%20amphiphilic%20molecules%20on%20titania%20surfaces&rft.jtitle=RSC%20advances&rft.au=Gon%C3%A7alves%20Dias,%20Leonardo%20Francisco&rft.date=2020-11-02&rft.volume=1&rft.issue=65&rft.spage=39854&rft.epage=39869&rft.pages=39854-39869&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra06511k&rft_dat=%3Cproquest_pubme%3E2456826480%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456826480&rft_id=info:pmid/35558137&rfr_iscdi=true |