Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts
The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the k...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2022-08, Vol.236, p.485-59 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 485 |
container_title | Faraday discussions |
container_volume | 236 |
creator | Redekop, Evgeniy A Poelman, Hilde Filez, Matthias Ramachandran, Ranjith K Dendooven, Jolien Detavernier, Christophe Marin, Guy B Olsbye, Unni Galvita, Vladimir V |
description | The spectro-kinetic characterization of complex catalytic materials,
i.e.
relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO
2
catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.
We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD). |
doi_str_mv | 10.1039/d1fd00120e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35543256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706260629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgdRbK3eeK8EvNkKo_neyeXQaauw4IIVvBuyyUlNnZlMk5nC_hL_rpluW8GLkJDz5DnhvEXxluBPBDP12RJnMSYUw7PimDDJS8FV9Xw5C1VKyfFR8SqlG4yxzNWXxRETgjMq5HHxp-789eCHazT5HsoIKXR3YNFvP8DkTUKrq3p7ivRgUZqj0wZQGsFMMSQTxj1a1dvy5_b7KXIhIo36EAGZ0I8RfsGQ_B2gebAQ05QNS5fgUL1pynzllza0uVezJr-00CGjJ93t05ReFy-c7hK8edhPih8X51dnX8rNt8uvZ_WmNIzRqdxhygQDDVAJyblWlrC1U4qLncZEYWyYIsbu8iBYRWQFlmpH165ya8GpU-ykWB28Ywy3M6Sp7X0y0HV6gDCnlkpJBSeYi4x--A-9CXMc8u9ausaSyrwW4ccDZfKIUgTXjtH3Ou5bgtslrrYhF819XOcZfv-gnHc92Cf0MZ8MvDsAMZmn6r-82V-h1pg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706260629</pqid></control><display><type>article</type><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</creator><creatorcontrib>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</creatorcontrib><description>The spectro-kinetic characterization of complex catalytic materials,
i.e.
relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO
2
catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.
We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00120e</identifier><identifier>PMID: 35543256</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkanes ; Atomic layer epitaxy ; Bimetals ; Catalysis ; Catalysts ; Coke ; Dehydrogenation ; Evolution ; Exposure ; Photoelectrons ; Pressure ; Propylene ; Reaction kinetics ; Selectivity ; Silicon dioxide ; Spectrum analysis ; Three dimensional models ; X ray photoelectron spectroscopy</subject><ispartof>Faraday discussions, 2022-08, Vol.236, p.485-59</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</cites><orcidid>0000-0002-2385-3693 ; 0000-0002-9423-219X ; 0000-0003-3693-2857 ; 0000-0001-9205-7917 ; 0000-0001-6430-8811 ; 0000-0003-4267-7397 ; 0000-0002-6733-1213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35543256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redekop, Evgeniy A</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Ramachandran, Ranjith K</creatorcontrib><creatorcontrib>Dendooven, Jolien</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Marin, Guy B</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><creatorcontrib>Galvita, Vladimir V</creatorcontrib><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The spectro-kinetic characterization of complex catalytic materials,
i.e.
relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO
2
catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.
We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</description><subject>Alkanes</subject><subject>Atomic layer epitaxy</subject><subject>Bimetals</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Coke</subject><subject>Dehydrogenation</subject><subject>Evolution</subject><subject>Exposure</subject><subject>Photoelectrons</subject><subject>Pressure</subject><subject>Propylene</subject><subject>Reaction kinetics</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>X ray photoelectron spectroscopy</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkV1rFDEUhgdRbK3eeK8EvNkKo_neyeXQaauw4IIVvBuyyUlNnZlMk5nC_hL_rpluW8GLkJDz5DnhvEXxluBPBDP12RJnMSYUw7PimDDJS8FV9Xw5C1VKyfFR8SqlG4yxzNWXxRETgjMq5HHxp-789eCHazT5HsoIKXR3YNFvP8DkTUKrq3p7ivRgUZqj0wZQGsFMMSQTxj1a1dvy5_b7KXIhIo36EAGZ0I8RfsGQ_B2gebAQ05QNS5fgUL1pynzllza0uVezJr-00CGjJ93t05ReFy-c7hK8edhPih8X51dnX8rNt8uvZ_WmNIzRqdxhygQDDVAJyblWlrC1U4qLncZEYWyYIsbu8iBYRWQFlmpH165ya8GpU-ykWB28Ywy3M6Sp7X0y0HV6gDCnlkpJBSeYi4x--A-9CXMc8u9ausaSyrwW4ccDZfKIUgTXjtH3Ou5bgtslrrYhF819XOcZfv-gnHc92Cf0MZ8MvDsAMZmn6r-82V-h1pg8</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Redekop, Evgeniy A</creator><creator>Poelman, Hilde</creator><creator>Filez, Matthias</creator><creator>Ramachandran, Ranjith K</creator><creator>Dendooven, Jolien</creator><creator>Detavernier, Christophe</creator><creator>Marin, Guy B</creator><creator>Olsbye, Unni</creator><creator>Galvita, Vladimir V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2385-3693</orcidid><orcidid>https://orcid.org/0000-0002-9423-219X</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid><orcidid>https://orcid.org/0000-0001-9205-7917</orcidid><orcidid>https://orcid.org/0000-0001-6430-8811</orcidid><orcidid>https://orcid.org/0000-0003-4267-7397</orcidid><orcidid>https://orcid.org/0000-0002-6733-1213</orcidid></search><sort><creationdate>20220825</creationdate><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><author>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkanes</topic><topic>Atomic layer epitaxy</topic><topic>Bimetals</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Coke</topic><topic>Dehydrogenation</topic><topic>Evolution</topic><topic>Exposure</topic><topic>Photoelectrons</topic><topic>Pressure</topic><topic>Propylene</topic><topic>Reaction kinetics</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redekop, Evgeniy A</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Ramachandran, Ranjith K</creatorcontrib><creatorcontrib>Dendooven, Jolien</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Marin, Guy B</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><creatorcontrib>Galvita, Vladimir V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redekop, Evgeniy A</au><au>Poelman, Hilde</au><au>Filez, Matthias</au><au>Ramachandran, Ranjith K</au><au>Dendooven, Jolien</au><au>Detavernier, Christophe</au><au>Marin, Guy B</au><au>Olsbye, Unni</au><au>Galvita, Vladimir V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2022-08-25</date><risdate>2022</risdate><volume>236</volume><spage>485</spage><epage>59</epage><pages>485-59</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The spectro-kinetic characterization of complex catalytic materials,
i.e.
relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO
2
catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.
We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35543256</pmid><doi>10.1039/d1fd00120e</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2385-3693</orcidid><orcidid>https://orcid.org/0000-0002-9423-219X</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid><orcidid>https://orcid.org/0000-0001-9205-7917</orcidid><orcidid>https://orcid.org/0000-0001-6430-8811</orcidid><orcidid>https://orcid.org/0000-0003-4267-7397</orcidid><orcidid>https://orcid.org/0000-0002-6733-1213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2022-08, Vol.236, p.485-59 |
issn | 1359-6640 1364-5498 |
language | eng |
recordid | cdi_pubmed_primary_35543256 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alkanes Atomic layer epitaxy Bimetals Catalysis Catalysts Coke Dehydrogenation Evolution Exposure Photoelectrons Pressure Propylene Reaction kinetics Selectivity Silicon dioxide Spectrum analysis Three dimensional models X ray photoelectron spectroscopy |
title | Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aligning%20time-resolved%20kinetics%20(TAP)%20and%20surface%20spectroscopy%20(AP-XPS)%20for%20a%20more%20comprehensive%20understanding%20of%20ALD-derived%202D%20and%203D%20model%20catalysts&rft.jtitle=Faraday%20discussions&rft.au=Redekop,%20Evgeniy%20A&rft.date=2022-08-25&rft.volume=236&rft.spage=485&rft.epage=59&rft.pages=485-59&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00120e&rft_dat=%3Cproquest_pubme%3E2706260629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706260629&rft_id=info:pmid/35543256&rfr_iscdi=true |