Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts

The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2022-08, Vol.236, p.485-59
Hauptverfasser: Redekop, Evgeniy A, Poelman, Hilde, Filez, Matthias, Ramachandran, Ranjith K, Dendooven, Jolien, Detavernier, Christophe, Marin, Guy B, Olsbye, Unni, Galvita, Vladimir V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 485
container_title Faraday discussions
container_volume 236
creator Redekop, Evgeniy A
Poelman, Hilde
Filez, Matthias
Ramachandran, Ranjith K
Dendooven, Jolien
Detavernier, Christophe
Marin, Guy B
Olsbye, Unni
Galvita, Vladimir V
description The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO 2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research. We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).
doi_str_mv 10.1039/d1fd00120e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35543256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706260629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhgdRbK3eeK8EvNkKo_neyeXQaauw4IIVvBuyyUlNnZlMk5nC_hL_rpluW8GLkJDz5DnhvEXxluBPBDP12RJnMSYUw7PimDDJS8FV9Xw5C1VKyfFR8SqlG4yxzNWXxRETgjMq5HHxp-789eCHazT5HsoIKXR3YNFvP8DkTUKrq3p7ivRgUZqj0wZQGsFMMSQTxj1a1dvy5_b7KXIhIo36EAGZ0I8RfsGQ_B2gebAQ05QNS5fgUL1pynzllza0uVezJr-00CGjJ93t05ReFy-c7hK8edhPih8X51dnX8rNt8uvZ_WmNIzRqdxhygQDDVAJyblWlrC1U4qLncZEYWyYIsbu8iBYRWQFlmpH165ya8GpU-ykWB28Ywy3M6Sp7X0y0HV6gDCnlkpJBSeYi4x--A-9CXMc8u9ausaSyrwW4ccDZfKIUgTXjtH3Ou5bgtslrrYhF819XOcZfv-gnHc92Cf0MZ8MvDsAMZmn6r-82V-h1pg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706260629</pqid></control><display><type>article</type><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</creator><creatorcontrib>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</creatorcontrib><description>The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO 2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research. We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00120e</identifier><identifier>PMID: 35543256</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkanes ; Atomic layer epitaxy ; Bimetals ; Catalysis ; Catalysts ; Coke ; Dehydrogenation ; Evolution ; Exposure ; Photoelectrons ; Pressure ; Propylene ; Reaction kinetics ; Selectivity ; Silicon dioxide ; Spectrum analysis ; Three dimensional models ; X ray photoelectron spectroscopy</subject><ispartof>Faraday discussions, 2022-08, Vol.236, p.485-59</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</cites><orcidid>0000-0002-2385-3693 ; 0000-0002-9423-219X ; 0000-0003-3693-2857 ; 0000-0001-9205-7917 ; 0000-0001-6430-8811 ; 0000-0003-4267-7397 ; 0000-0002-6733-1213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35543256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redekop, Evgeniy A</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Ramachandran, Ranjith K</creatorcontrib><creatorcontrib>Dendooven, Jolien</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Marin, Guy B</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><creatorcontrib>Galvita, Vladimir V</creatorcontrib><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO 2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research. We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</description><subject>Alkanes</subject><subject>Atomic layer epitaxy</subject><subject>Bimetals</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Coke</subject><subject>Dehydrogenation</subject><subject>Evolution</subject><subject>Exposure</subject><subject>Photoelectrons</subject><subject>Pressure</subject><subject>Propylene</subject><subject>Reaction kinetics</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>X ray photoelectron spectroscopy</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkV1rFDEUhgdRbK3eeK8EvNkKo_neyeXQaauw4IIVvBuyyUlNnZlMk5nC_hL_rpluW8GLkJDz5DnhvEXxluBPBDP12RJnMSYUw7PimDDJS8FV9Xw5C1VKyfFR8SqlG4yxzNWXxRETgjMq5HHxp-789eCHazT5HsoIKXR3YNFvP8DkTUKrq3p7ivRgUZqj0wZQGsFMMSQTxj1a1dvy5_b7KXIhIo36EAGZ0I8RfsGQ_B2gebAQ05QNS5fgUL1pynzllza0uVezJr-00CGjJ93t05ReFy-c7hK8edhPih8X51dnX8rNt8uvZ_WmNIzRqdxhygQDDVAJyblWlrC1U4qLncZEYWyYIsbu8iBYRWQFlmpH165ya8GpU-ykWB28Ywy3M6Sp7X0y0HV6gDCnlkpJBSeYi4x--A-9CXMc8u9ausaSyrwW4ccDZfKIUgTXjtH3Ou5bgtslrrYhF819XOcZfv-gnHc92Cf0MZ8MvDsAMZmn6r-82V-h1pg8</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Redekop, Evgeniy A</creator><creator>Poelman, Hilde</creator><creator>Filez, Matthias</creator><creator>Ramachandran, Ranjith K</creator><creator>Dendooven, Jolien</creator><creator>Detavernier, Christophe</creator><creator>Marin, Guy B</creator><creator>Olsbye, Unni</creator><creator>Galvita, Vladimir V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2385-3693</orcidid><orcidid>https://orcid.org/0000-0002-9423-219X</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid><orcidid>https://orcid.org/0000-0001-9205-7917</orcidid><orcidid>https://orcid.org/0000-0001-6430-8811</orcidid><orcidid>https://orcid.org/0000-0003-4267-7397</orcidid><orcidid>https://orcid.org/0000-0002-6733-1213</orcidid></search><sort><creationdate>20220825</creationdate><title>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</title><author>Redekop, Evgeniy A ; Poelman, Hilde ; Filez, Matthias ; Ramachandran, Ranjith K ; Dendooven, Jolien ; Detavernier, Christophe ; Marin, Guy B ; Olsbye, Unni ; Galvita, Vladimir V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b02353eaee85644a9d137f9945ba01900c391cdb35938168ed2af27f8f7542f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkanes</topic><topic>Atomic layer epitaxy</topic><topic>Bimetals</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Coke</topic><topic>Dehydrogenation</topic><topic>Evolution</topic><topic>Exposure</topic><topic>Photoelectrons</topic><topic>Pressure</topic><topic>Propylene</topic><topic>Reaction kinetics</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redekop, Evgeniy A</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Ramachandran, Ranjith K</creatorcontrib><creatorcontrib>Dendooven, Jolien</creatorcontrib><creatorcontrib>Detavernier, Christophe</creatorcontrib><creatorcontrib>Marin, Guy B</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><creatorcontrib>Galvita, Vladimir V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redekop, Evgeniy A</au><au>Poelman, Hilde</au><au>Filez, Matthias</au><au>Ramachandran, Ranjith K</au><au>Dendooven, Jolien</au><au>Detavernier, Christophe</au><au>Marin, Guy B</au><au>Olsbye, Unni</au><au>Galvita, Vladimir V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2022-08-25</date><risdate>2022</risdate><volume>236</volume><spage>485</spage><epage>59</epage><pages>485-59</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO 2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research. We propose a strategy for time-resolved measurements that can provide quantitatively reconciled spectroscopic (AP-XPS) and kinetic (TAP) information about catalytic reactions on tailored 2D and 3D model materials prepared via Atomic layer deposition (ALD).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35543256</pmid><doi>10.1039/d1fd00120e</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2385-3693</orcidid><orcidid>https://orcid.org/0000-0002-9423-219X</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid><orcidid>https://orcid.org/0000-0001-9205-7917</orcidid><orcidid>https://orcid.org/0000-0001-6430-8811</orcidid><orcidid>https://orcid.org/0000-0003-4267-7397</orcidid><orcidid>https://orcid.org/0000-0002-6733-1213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2022-08, Vol.236, p.485-59
issn 1359-6640
1364-5498
language eng
recordid cdi_pubmed_primary_35543256
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alkanes
Atomic layer epitaxy
Bimetals
Catalysis
Catalysts
Coke
Dehydrogenation
Evolution
Exposure
Photoelectrons
Pressure
Propylene
Reaction kinetics
Selectivity
Silicon dioxide
Spectrum analysis
Three dimensional models
X ray photoelectron spectroscopy
title Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aligning%20time-resolved%20kinetics%20(TAP)%20and%20surface%20spectroscopy%20(AP-XPS)%20for%20a%20more%20comprehensive%20understanding%20of%20ALD-derived%202D%20and%203D%20model%20catalysts&rft.jtitle=Faraday%20discussions&rft.au=Redekop,%20Evgeniy%20A&rft.date=2022-08-25&rft.volume=236&rft.spage=485&rft.epage=59&rft.pages=485-59&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00120e&rft_dat=%3Cproquest_pubme%3E2706260629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706260629&rft_id=info:pmid/35543256&rfr_iscdi=true