Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth
First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculati...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-12, Vol.9 (69), p.467-468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 69 |
container_start_page | 467 |
container_title | RSC advances |
container_volume | 9 |
creator | Wu, C. Y Sun, L Han, J. C Gong, H. R |
description | First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer.
First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi. |
doi_str_mv | 10.1039/c9ra08341c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35542685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2326793220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</originalsourceid><addsrcrecordid>eNp9kc9LBCEcxSWKWqpL92KiSwRbjo7uegmWpV-wEERdE9f52rrMjJM6Rf991ta2dciLfnkfH08fQns5Ps0xFWdaeIWHtMj1GuoRXPA-wVysr5y30G4Ic5wWZznh-SbaoowVhA9ZDz1eGAM6hsyZrHKvWWlraIJ1japsfMtck0GVdO8aq7MQfadj5yFTTZnFGfjaLeQktt614KOFT6-pDXUXZztow6gqwO7Xvo0eLi_ux9f9ye3VzXg06etCsNjXUNBS50QrYYwpBRHwMQ6mw_QKNkihzRD4VDCOeU5VgRlQajSmAIwzouk2Ol_4tt20TnehiV5VsvW2Vv5NOmXlb6WxM_nkXqTAA04ZTwbHXwbePXcQoqxt0FBVqgHXBUk4JyxlLYqEHv1B567z6cMSRQkfCEoITtTJgtLeheDBLMPkWH40J8fibvTZ3DjBB6vxl-h3TwnYXwA-6KX6U33SD__TZVsa-g4Ea6rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326793220</pqid></control><display><type>article</type><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</creator><creatorcontrib>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</creatorcontrib><description>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer.
First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra08341c</identifier><identifier>PMID: 35542685</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bismuth ; Chemistry ; Electrical resistivity ; Electron transport ; Electronic structure ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Mathematical analysis ; Monolayers ; Potential theory ; Relaxation time ; Seebeck effect ; Thermal conductivity ; Transport properties ; Transport theory</subject><ispartof>RSC advances, 2019-12, Vol.9 (69), p.467-468</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</citedby><cites>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</cites><orcidid>0000-0001-7600-0611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35542685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, C. Y</creatorcontrib><creatorcontrib>Sun, L</creatorcontrib><creatorcontrib>Han, J. C</creatorcontrib><creatorcontrib>Gong, H. R</creatorcontrib><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer.
First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</description><subject>Bismuth</subject><subject>Chemistry</subject><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Electronic structure</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Potential theory</subject><subject>Relaxation time</subject><subject>Seebeck effect</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><subject>Transport theory</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LBCEcxSWKWqpL92KiSwRbjo7uegmWpV-wEERdE9f52rrMjJM6Rf991ta2dciLfnkfH08fQns5Ps0xFWdaeIWHtMj1GuoRXPA-wVysr5y30G4Ic5wWZznh-SbaoowVhA9ZDz1eGAM6hsyZrHKvWWlraIJ1japsfMtck0GVdO8aq7MQfadj5yFTTZnFGfjaLeQktt614KOFT6-pDXUXZztow6gqwO7Xvo0eLi_ux9f9ye3VzXg06etCsNjXUNBS50QrYYwpBRHwMQ6mw_QKNkihzRD4VDCOeU5VgRlQajSmAIwzouk2Ol_4tt20TnehiV5VsvW2Vv5NOmXlb6WxM_nkXqTAA04ZTwbHXwbePXcQoqxt0FBVqgHXBUk4JyxlLYqEHv1B567z6cMSRQkfCEoITtTJgtLeheDBLMPkWH40J8fibvTZ3DjBB6vxl-h3TwnYXwA-6KX6U33SD__TZVsa-g4Ea6rQ</recordid><startdate>20191209</startdate><enddate>20191209</enddate><creator>Wu, C. Y</creator><creator>Sun, L</creator><creator>Han, J. C</creator><creator>Gong, H. R</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7600-0611</orcidid></search><sort><creationdate>20191209</creationdate><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><author>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bismuth</topic><topic>Chemistry</topic><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Electronic structure</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Potential theory</topic><topic>Relaxation time</topic><topic>Seebeck effect</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, C. Y</creatorcontrib><creatorcontrib>Sun, L</creatorcontrib><creatorcontrib>Han, J. C</creatorcontrib><creatorcontrib>Gong, H. R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, C. Y</au><au>Sun, L</au><au>Han, J. C</au><au>Gong, H. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-12-09</date><risdate>2019</risdate><volume>9</volume><issue>69</issue><spage>467</spage><epage>468</epage><pages>467-468</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer.
First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35542685</pmid><doi>10.1039/c9ra08341c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7600-0611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-12, Vol.9 (69), p.467-468 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35542685 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Bismuth Chemistry Electrical resistivity Electron transport Electronic structure Figure of merit First principles Heat conductivity Heat transfer Mathematical analysis Monolayers Potential theory Relaxation time Seebeck effect Thermal conductivity Transport properties Transport theory |
title | Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20low%20dimensionality%20on%20electronic%20structure%20and%20thermoelectric%20properties%20of%20bismuth&rft.jtitle=RSC%20advances&rft.au=Wu,%20C.%20Y&rft.date=2019-12-09&rft.volume=9&rft.issue=69&rft.spage=467&rft.epage=468&rft.pages=467-468&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra08341c&rft_dat=%3Cproquest_pubme%3E2326793220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326793220&rft_id=info:pmid/35542685&rfr_iscdi=true |