Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth

First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-12, Vol.9 (69), p.467-468
Hauptverfasser: Wu, C. Y, Sun, L, Han, J. C, Gong, H. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 69
container_start_page 467
container_title RSC advances
container_volume 9
creator Wu, C. Y
Sun, L
Han, J. C
Gong, H. R
description First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer. First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.
doi_str_mv 10.1039/c9ra08341c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35542685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2326793220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</originalsourceid><addsrcrecordid>eNp9kc9LBCEcxSWKWqpL92KiSwRbjo7uegmWpV-wEERdE9f52rrMjJM6Rf991ta2dciLfnkfH08fQns5Ps0xFWdaeIWHtMj1GuoRXPA-wVysr5y30G4Ic5wWZznh-SbaoowVhA9ZDz1eGAM6hsyZrHKvWWlraIJ1japsfMtck0GVdO8aq7MQfadj5yFTTZnFGfjaLeQktt614KOFT6-pDXUXZztow6gqwO7Xvo0eLi_ux9f9ye3VzXg06etCsNjXUNBS50QrYYwpBRHwMQ6mw_QKNkihzRD4VDCOeU5VgRlQajSmAIwzouk2Ol_4tt20TnehiV5VsvW2Vv5NOmXlb6WxM_nkXqTAA04ZTwbHXwbePXcQoqxt0FBVqgHXBUk4JyxlLYqEHv1B567z6cMSRQkfCEoITtTJgtLeheDBLMPkWH40J8fibvTZ3DjBB6vxl-h3TwnYXwA-6KX6U33SD__TZVsa-g4Ea6rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326793220</pqid></control><display><type>article</type><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</creator><creatorcontrib>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</creatorcontrib><description>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer. First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra08341c</identifier><identifier>PMID: 35542685</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bismuth ; Chemistry ; Electrical resistivity ; Electron transport ; Electronic structure ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Mathematical analysis ; Monolayers ; Potential theory ; Relaxation time ; Seebeck effect ; Thermal conductivity ; Transport properties ; Transport theory</subject><ispartof>RSC advances, 2019-12, Vol.9 (69), p.467-468</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</citedby><cites>FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</cites><orcidid>0000-0001-7600-0611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35542685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, C. Y</creatorcontrib><creatorcontrib>Sun, L</creatorcontrib><creatorcontrib>Han, J. C</creatorcontrib><creatorcontrib>Gong, H. R</creatorcontrib><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer. First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</description><subject>Bismuth</subject><subject>Chemistry</subject><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Electronic structure</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Potential theory</subject><subject>Relaxation time</subject><subject>Seebeck effect</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><subject>Transport theory</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LBCEcxSWKWqpL92KiSwRbjo7uegmWpV-wEERdE9f52rrMjJM6Rf991ta2dciLfnkfH08fQns5Ps0xFWdaeIWHtMj1GuoRXPA-wVysr5y30G4Ic5wWZznh-SbaoowVhA9ZDz1eGAM6hsyZrHKvWWlraIJ1japsfMtck0GVdO8aq7MQfadj5yFTTZnFGfjaLeQktt614KOFT6-pDXUXZztow6gqwO7Xvo0eLi_ux9f9ye3VzXg06etCsNjXUNBS50QrYYwpBRHwMQ6mw_QKNkihzRD4VDCOeU5VgRlQajSmAIwzouk2Ol_4tt20TnehiV5VsvW2Vv5NOmXlb6WxM_nkXqTAA04ZTwbHXwbePXcQoqxt0FBVqgHXBUk4JyxlLYqEHv1B567z6cMSRQkfCEoITtTJgtLeheDBLMPkWH40J8fibvTZ3DjBB6vxl-h3TwnYXwA-6KX6U33SD__TZVsa-g4Ea6rQ</recordid><startdate>20191209</startdate><enddate>20191209</enddate><creator>Wu, C. Y</creator><creator>Sun, L</creator><creator>Han, J. C</creator><creator>Gong, H. R</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7600-0611</orcidid></search><sort><creationdate>20191209</creationdate><title>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</title><author>Wu, C. Y ; Sun, L ; Han, J. C ; Gong, H. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-ce43dc12ca9fffd929edc127b820457261f8e6b9560613a405e33fc03ee5652c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bismuth</topic><topic>Chemistry</topic><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Electronic structure</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Potential theory</topic><topic>Relaxation time</topic><topic>Seebeck effect</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, C. Y</creatorcontrib><creatorcontrib>Sun, L</creatorcontrib><creatorcontrib>Han, J. C</creatorcontrib><creatorcontrib>Gong, H. R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, C. Y</au><au>Sun, L</au><au>Han, J. C</au><au>Gong, H. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-12-09</date><risdate>2019</risdate><volume>9</volume><issue>69</issue><spage>467</spage><epage>468</epage><pages>467-468</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, electronic transport properties, Seebeck coefficients, and figure of merit of the β-bismuth monolayer and bulk Bi. Calculation reveals that low dimensionality can bring about the semimetal-semiconductor transition, decrease the lattice thermal conductivity, and increase the Seebeck coefficient of Bi. The relaxation time of electrons and holes is calculated according to the deformation potential theory, and is found to be more accurate than those reported in the literature. It is also shown that compared with Bi bulk, the β-bismuth monolayer possesses much lower electrical conductivity and electric thermal conductivity, while its figure of merit seems much bigger. The derived results are in good agreement with experimental results in the literature, and could provide a deep understanding of various properties of the β-bismuth monolayer. First-principles calculations and Boltzmann transport theory have been combined to comparatively investigate the band structure, phonon spectrum, lattice thermal conductivity, and the transport properties of the β-bismuth monolayer and bulk Bi.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35542685</pmid><doi>10.1039/c9ra08341c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7600-0611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-12, Vol.9 (69), p.467-468
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35542685
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Bismuth
Chemistry
Electrical resistivity
Electron transport
Electronic structure
Figure of merit
First principles
Heat conductivity
Heat transfer
Mathematical analysis
Monolayers
Potential theory
Relaxation time
Seebeck effect
Thermal conductivity
Transport properties
Transport theory
title Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20low%20dimensionality%20on%20electronic%20structure%20and%20thermoelectric%20properties%20of%20bismuth&rft.jtitle=RSC%20advances&rft.au=Wu,%20C.%20Y&rft.date=2019-12-09&rft.volume=9&rft.issue=69&rft.spage=467&rft.epage=468&rft.pages=467-468&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra08341c&rft_dat=%3Cproquest_pubme%3E2326793220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326793220&rft_id=info:pmid/35542685&rfr_iscdi=true