Active control of salinity-based power generation in nanopores using thermal and pH effects

Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-05, Vol.1 (32), p.18624-18631
Hauptverfasser: Mai, Van-Phung, Yang, Ruey-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18631
container_issue 32
container_start_page 18624
container_title RSC advances
container_volume 1
creator Mai, Van-Phung
Yang, Ruey-Jen
description Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems. The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.
doi_str_mv 10.1039/d0ra02329a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35518343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4MotrS9eFcCXqSwdfJzNxfhUasVCoLoyUOYzWZfU_Ylz2S30v_e1Fef1TnMDMyHL_PlS8gLBmcMhHk7QEbgght8Qg45SN1w0Obpo_2AnJRyA7W0Ylyz5-RAKMU6IcUh-b5yc7j11KU45zTRNNKCU4hhvmt6LH6g2_TTZ7r20WecQ4o0RBoxpm3KvtClhLim87XPG5woxspfUj-O3s3lmDwbcSr-5GEekW8fLr6eXzZXnz9-Ol9dNU7ybm5Yy4be9MxUH04J1bpWSuYGDUPLekDVc-mEYdCDkgId8hFNN_Z8VGCcQnFE3u10t0u_8YPz1QpOdpvDBvOdTRjsv5cYru063VoDSnRtVwXePAjk9GPxZbabUJyfJow-LcVyrRl0TMt79PV_6E1acqz2LJcgla5NVup0R7mcSsl-3D_DwN7HZt_Dl9Xv2FYVfvX4_T36J6QKvNwBubj99W_u4hetUZzn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564044</pqid></control><display><type>article</type><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Mai, Van-Phung ; Yang, Ruey-Jen</creator><creatorcontrib>Mai, Van-Phung ; Yang, Ruey-Jen</creatorcontrib><description>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems. The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra02329a</identifier><identifier>PMID: 35518343</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Active control ; Asymmetry ; Charge density ; Chemistry ; Computational fluid dynamics ; Computer simulation ; Concentration gradient ; Electric power generation ; Energy harvesting ; High temperature ; Ion concentration ; Maximum power ; Porosity ; Reservoirs ; Room temperature ; Saline solutions ; Salinity ; Silicon dioxide ; Surface charge ; Temperature gradients</subject><ispartof>RSC advances, 2020-05, Vol.1 (32), p.18624-18631</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</citedby><cites>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</cites><orcidid>0000-0002-1958-0389 ; 0000-0002-5756-0274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35518343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, Van-Phung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems. The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</description><subject>Active control</subject><subject>Asymmetry</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>Electric power generation</subject><subject>Energy harvesting</subject><subject>High temperature</subject><subject>Ion concentration</subject><subject>Maximum power</subject><subject>Porosity</subject><subject>Reservoirs</subject><subject>Room temperature</subject><subject>Saline solutions</subject><subject>Salinity</subject><subject>Silicon dioxide</subject><subject>Surface charge</subject><subject>Temperature gradients</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFTEQx4MotrS9eFcCXqSwdfJzNxfhUasVCoLoyUOYzWZfU_Ylz2S30v_e1Fef1TnMDMyHL_PlS8gLBmcMhHk7QEbgght8Qg45SN1w0Obpo_2AnJRyA7W0Ylyz5-RAKMU6IcUh-b5yc7j11KU45zTRNNKCU4hhvmt6LH6g2_TTZ7r20WecQ4o0RBoxpm3KvtClhLim87XPG5woxspfUj-O3s3lmDwbcSr-5GEekW8fLr6eXzZXnz9-Ol9dNU7ybm5Yy4be9MxUH04J1bpWSuYGDUPLekDVc-mEYdCDkgId8hFNN_Z8VGCcQnFE3u10t0u_8YPz1QpOdpvDBvOdTRjsv5cYru063VoDSnRtVwXePAjk9GPxZbabUJyfJow-LcVyrRl0TMt79PV_6E1acqz2LJcgla5NVup0R7mcSsl-3D_DwN7HZt_Dl9Xv2FYVfvX4_T36J6QKvNwBubj99W_u4hetUZzn</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Mai, Van-Phung</creator><creator>Yang, Ruey-Jen</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1958-0389</orcidid><orcidid>https://orcid.org/0000-0002-5756-0274</orcidid></search><sort><creationdate>20200515</creationdate><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><author>Mai, Van-Phung ; Yang, Ruey-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Asymmetry</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>Electric power generation</topic><topic>Energy harvesting</topic><topic>High temperature</topic><topic>Ion concentration</topic><topic>Maximum power</topic><topic>Porosity</topic><topic>Reservoirs</topic><topic>Room temperature</topic><topic>Saline solutions</topic><topic>Salinity</topic><topic>Silicon dioxide</topic><topic>Surface charge</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Van-Phung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Van-Phung</au><au>Yang, Ruey-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active control of salinity-based power generation in nanopores using thermal and pH effects</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>1</volume><issue>32</issue><spage>18624</spage><epage>18631</epage><pages>18624-18631</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems. The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35518343</pmid><doi>10.1039/d0ra02329a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1958-0389</orcidid><orcidid>https://orcid.org/0000-0002-5756-0274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-05, Vol.1 (32), p.18624-18631
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35518343
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Active control
Asymmetry
Charge density
Chemistry
Computational fluid dynamics
Computer simulation
Concentration gradient
Electric power generation
Energy harvesting
High temperature
Ion concentration
Maximum power
Porosity
Reservoirs
Room temperature
Saline solutions
Salinity
Silicon dioxide
Surface charge
Temperature gradients
title Active control of salinity-based power generation in nanopores using thermal and pH effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20control%20of%20salinity-based%20power%20generation%20in%20nanopores%20using%20thermal%20and%20pH%20effects&rft.jtitle=RSC%20advances&rft.au=Mai,%20Van-Phung&rft.date=2020-05-15&rft.volume=1&rft.issue=32&rft.spage=18624&rft.epage=18631&rft.pages=18624-18631&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra02329a&rft_dat=%3Cproquest_pubme%3E2404564044%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564044&rft_id=info:pmid/35518343&rfr_iscdi=true