Active control of salinity-based power generation in nanopores using thermal and pH effects
Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors ( e.g. , the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors ( e.g. , the concentration gra...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-05, Vol.1 (32), p.18624-18631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18631 |
---|---|
container_issue | 32 |
container_start_page | 18624 |
container_title | RSC advances |
container_volume | 1 |
creator | Mai, Van-Phung Yang, Ruey-Jen |
description | Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (
e.g.
, the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (
e.g.
, the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.
The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated. |
doi_str_mv | 10.1039/d0ra02329a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35518343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4MotrS9eFcCXqSwdfJzNxfhUasVCoLoyUOYzWZfU_Ylz2S30v_e1Fef1TnMDMyHL_PlS8gLBmcMhHk7QEbgght8Qg45SN1w0Obpo_2AnJRyA7W0Ylyz5-RAKMU6IcUh-b5yc7j11KU45zTRNNKCU4hhvmt6LH6g2_TTZ7r20WecQ4o0RBoxpm3KvtClhLim87XPG5woxspfUj-O3s3lmDwbcSr-5GEekW8fLr6eXzZXnz9-Ol9dNU7ybm5Yy4be9MxUH04J1bpWSuYGDUPLekDVc-mEYdCDkgId8hFNN_Z8VGCcQnFE3u10t0u_8YPz1QpOdpvDBvOdTRjsv5cYru063VoDSnRtVwXePAjk9GPxZbabUJyfJow-LcVyrRl0TMt79PV_6E1acqz2LJcgla5NVup0R7mcSsl-3D_DwN7HZt_Dl9Xv2FYVfvX4_T36J6QKvNwBubj99W_u4hetUZzn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564044</pqid></control><display><type>article</type><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Mai, Van-Phung ; Yang, Ruey-Jen</creator><creatorcontrib>Mai, Van-Phung ; Yang, Ruey-Jen</creatorcontrib><description>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (
e.g.
, the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (
e.g.
, the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.
The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra02329a</identifier><identifier>PMID: 35518343</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Active control ; Asymmetry ; Charge density ; Chemistry ; Computational fluid dynamics ; Computer simulation ; Concentration gradient ; Electric power generation ; Energy harvesting ; High temperature ; Ion concentration ; Maximum power ; Porosity ; Reservoirs ; Room temperature ; Saline solutions ; Salinity ; Silicon dioxide ; Surface charge ; Temperature gradients</subject><ispartof>RSC advances, 2020-05, Vol.1 (32), p.18624-18631</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</citedby><cites>FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</cites><orcidid>0000-0002-1958-0389 ; 0000-0002-5756-0274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35518343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, Van-Phung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (
e.g.
, the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (
e.g.
, the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.
The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</description><subject>Active control</subject><subject>Asymmetry</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>Electric power generation</subject><subject>Energy harvesting</subject><subject>High temperature</subject><subject>Ion concentration</subject><subject>Maximum power</subject><subject>Porosity</subject><subject>Reservoirs</subject><subject>Room temperature</subject><subject>Saline solutions</subject><subject>Salinity</subject><subject>Silicon dioxide</subject><subject>Surface charge</subject><subject>Temperature gradients</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFTEQx4MotrS9eFcCXqSwdfJzNxfhUasVCoLoyUOYzWZfU_Ylz2S30v_e1Fef1TnMDMyHL_PlS8gLBmcMhHk7QEbgght8Qg45SN1w0Obpo_2AnJRyA7W0Ylyz5-RAKMU6IcUh-b5yc7j11KU45zTRNNKCU4hhvmt6LH6g2_TTZ7r20WecQ4o0RBoxpm3KvtClhLim87XPG5woxspfUj-O3s3lmDwbcSr-5GEekW8fLr6eXzZXnz9-Ol9dNU7ybm5Yy4be9MxUH04J1bpWSuYGDUPLekDVc-mEYdCDkgId8hFNN_Z8VGCcQnFE3u10t0u_8YPz1QpOdpvDBvOdTRjsv5cYru063VoDSnRtVwXePAjk9GPxZbabUJyfJow-LcVyrRl0TMt79PV_6E1acqz2LJcgla5NVup0R7mcSsl-3D_DwN7HZt_Dl9Xv2FYVfvX4_T36J6QKvNwBubj99W_u4hetUZzn</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Mai, Van-Phung</creator><creator>Yang, Ruey-Jen</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1958-0389</orcidid><orcidid>https://orcid.org/0000-0002-5756-0274</orcidid></search><sort><creationdate>20200515</creationdate><title>Active control of salinity-based power generation in nanopores using thermal and pH effects</title><author>Mai, Van-Phung ; Yang, Ruey-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-171db9b19a02c5357c7441cd60d71b0a5b24c3910b0543aca2fa98fb2f509c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Asymmetry</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>Electric power generation</topic><topic>Energy harvesting</topic><topic>High temperature</topic><topic>Ion concentration</topic><topic>Maximum power</topic><topic>Porosity</topic><topic>Reservoirs</topic><topic>Room temperature</topic><topic>Saline solutions</topic><topic>Salinity</topic><topic>Silicon dioxide</topic><topic>Surface charge</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Van-Phung</creatorcontrib><creatorcontrib>Yang, Ruey-Jen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Van-Phung</au><au>Yang, Ruey-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active control of salinity-based power generation in nanopores using thermal and pH effects</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>1</volume><issue>32</issue><spage>18624</spage><epage>18631</epage><pages>18624-18631</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (
e.g.
, the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (
e.g.
, the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.
The combined effects of pH and thermal conditions on enhancing blue energy harvesting through nanopores are investigated.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35518343</pmid><doi>10.1039/d0ra02329a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1958-0389</orcidid><orcidid>https://orcid.org/0000-0002-5756-0274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-05, Vol.1 (32), p.18624-18631 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35518343 |
source | DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Active control Asymmetry Charge density Chemistry Computational fluid dynamics Computer simulation Concentration gradient Electric power generation Energy harvesting High temperature Ion concentration Maximum power Porosity Reservoirs Room temperature Saline solutions Salinity Silicon dioxide Surface charge Temperature gradients |
title | Active control of salinity-based power generation in nanopores using thermal and pH effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20control%20of%20salinity-based%20power%20generation%20in%20nanopores%20using%20thermal%20and%20pH%20effects&rft.jtitle=RSC%20advances&rft.au=Mai,%20Van-Phung&rft.date=2020-05-15&rft.volume=1&rft.issue=32&rft.spage=18624&rft.epage=18631&rft.pages=18624-18631&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra02329a&rft_dat=%3Cproquest_pubme%3E2404564044%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564044&rft_id=info:pmid/35518343&rfr_iscdi=true |