Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study
The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drug...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-10, Vol.1 (62), p.3777-3772 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3772 |
---|---|
container_issue | 62 |
container_start_page | 3777 |
container_title | RSC advances |
container_volume | 1 |
creator | Surti, Malvi Patel, Mitesh Adnan, Mohd Moin, Afrasim Ashraf, Syed Amir Siddiqui, Arif Jamal Snoussi, Mejdi Deshpande, Sumukh Reddy, Mandadi Narsimha |
description | The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an
in silico
molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (
R
g
) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions
in vivo
.
Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach. |
doi_str_mv | 10.1039/d0ra06379g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35515150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661082388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXphTtoEJeCCPhjnXU4IK22UFaqVKmFXi3HdrJuEzu1naL9g_wuDFuWwgH7MGPPo1czo7conmL0FiNav9MoSFTRed09KPYJmlUlQVX98F6-VxzGeIXyqRgmFX5c7FHGcL5ov_i-6u0gbybrvDNwNMhgc4yjd52BwSTZ-N4m8wpkBAnO35oerFvbxiYfwLdwsTi_KJf-siRwbTaQZOhMgjH4ZKyLmQXlhzHLRu_gm01riFPXmZiMhuXZ5eq4xDXoMHXxPWgTbees696A9uo6JyCdhsH3Rk29DKA3Tg5WRYh2yB_JZs2YJr15UjxqZR_N4V08KL5--vhl-bk8PTtZLRenpWKEprJWPG9hpoghhjHeVERJPkdKE6k5RRXisslPjnVNajqjmtGmZaxRCEuKjKYHxYet7jg1g9HKuBRkL8aQlxg2wksr_q44uxadvxU1YnM8o1ng6E4g-Jspr0EMNirT99IZP0VBqgojTijnGX35D3rlp-DyeILMGK0IJwxn6vWWUsHHGEy7awYj8dMh4hidL3455CTDz--3v0N_-yEDL7ZAiGpX_WMxMeo2M8_-x9Affz_OsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453628251</pqid></control><display><type>article</type><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</creator><creatorcontrib>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</creatorcontrib><description>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an
in silico
molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (
R
g
) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions
in vivo
.
Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra06379g</identifier><identifier>PMID: 35515150</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Chemistry ; Coronaviruses ; Drugs ; Hydrogen bonds ; In vivo methods and tests ; Interferon ; Metabolites ; Molecular docking ; Molecular dynamics ; Molecular interactions ; Papain ; Protease ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; Severe acute respiratory syndrome coronavirus 2 ; Side effects ; Vaccines ; Viral diseases ; Viral infections ; Viruses</subject><ispartof>RSC advances, 2020-10, Vol.1 (62), p.3777-3772</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</citedby><cites>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</cites><orcidid>0000-0002-6236-0920 ; 0000-0002-5333-9505 ; 0000-0002-7080-6822 ; 0000-0002-2354-1382 ; 0000-0002-9283-2124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057143/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057143/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35515150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Surti, Malvi</creatorcontrib><creatorcontrib>Patel, Mitesh</creatorcontrib><creatorcontrib>Adnan, Mohd</creatorcontrib><creatorcontrib>Moin, Afrasim</creatorcontrib><creatorcontrib>Ashraf, Syed Amir</creatorcontrib><creatorcontrib>Siddiqui, Arif Jamal</creatorcontrib><creatorcontrib>Snoussi, Mejdi</creatorcontrib><creatorcontrib>Deshpande, Sumukh</creatorcontrib><creatorcontrib>Reddy, Mandadi Narsimha</creatorcontrib><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an
in silico
molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (
R
g
) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions
in vivo
.
Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</description><subject>Binding</subject><subject>Chemistry</subject><subject>Coronaviruses</subject><subject>Drugs</subject><subject>Hydrogen bonds</subject><subject>In vivo methods and tests</subject><subject>Interferon</subject><subject>Metabolites</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Molecular interactions</subject><subject>Papain</subject><subject>Protease</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Side effects</subject><subject>Vaccines</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEolXphTtoEJeCCPhjnXU4IK22UFaqVKmFXi3HdrJuEzu1naL9g_wuDFuWwgH7MGPPo1czo7conmL0FiNav9MoSFTRed09KPYJmlUlQVX98F6-VxzGeIXyqRgmFX5c7FHGcL5ov_i-6u0gbybrvDNwNMhgc4yjd52BwSTZ-N4m8wpkBAnO35oerFvbxiYfwLdwsTi_KJf-siRwbTaQZOhMgjH4ZKyLmQXlhzHLRu_gm01riFPXmZiMhuXZ5eq4xDXoMHXxPWgTbees696A9uo6JyCdhsH3Rk29DKA3Tg5WRYh2yB_JZs2YJr15UjxqZR_N4V08KL5--vhl-bk8PTtZLRenpWKEprJWPG9hpoghhjHeVERJPkdKE6k5RRXisslPjnVNajqjmtGmZaxRCEuKjKYHxYet7jg1g9HKuBRkL8aQlxg2wksr_q44uxadvxU1YnM8o1ng6E4g-Jspr0EMNirT99IZP0VBqgojTijnGX35D3rlp-DyeILMGK0IJwxn6vWWUsHHGEy7awYj8dMh4hidL3455CTDz--3v0N_-yEDL7ZAiGpX_WMxMeo2M8_-x9Affz_OsA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Surti, Malvi</creator><creator>Patel, Mitesh</creator><creator>Adnan, Mohd</creator><creator>Moin, Afrasim</creator><creator>Ashraf, Syed Amir</creator><creator>Siddiqui, Arif Jamal</creator><creator>Snoussi, Mejdi</creator><creator>Deshpande, Sumukh</creator><creator>Reddy, Mandadi Narsimha</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6236-0920</orcidid><orcidid>https://orcid.org/0000-0002-5333-9505</orcidid><orcidid>https://orcid.org/0000-0002-7080-6822</orcidid><orcidid>https://orcid.org/0000-0002-2354-1382</orcidid><orcidid>https://orcid.org/0000-0002-9283-2124</orcidid></search><sort><creationdate>20201013</creationdate><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><author>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding</topic><topic>Chemistry</topic><topic>Coronaviruses</topic><topic>Drugs</topic><topic>Hydrogen bonds</topic><topic>In vivo methods and tests</topic><topic>Interferon</topic><topic>Metabolites</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Molecular interactions</topic><topic>Papain</topic><topic>Protease</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Side effects</topic><topic>Vaccines</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surti, Malvi</creatorcontrib><creatorcontrib>Patel, Mitesh</creatorcontrib><creatorcontrib>Adnan, Mohd</creatorcontrib><creatorcontrib>Moin, Afrasim</creatorcontrib><creatorcontrib>Ashraf, Syed Amir</creatorcontrib><creatorcontrib>Siddiqui, Arif Jamal</creatorcontrib><creatorcontrib>Snoussi, Mejdi</creatorcontrib><creatorcontrib>Deshpande, Sumukh</creatorcontrib><creatorcontrib>Reddy, Mandadi Narsimha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surti, Malvi</au><au>Patel, Mitesh</au><au>Adnan, Mohd</au><au>Moin, Afrasim</au><au>Ashraf, Syed Amir</au><au>Siddiqui, Arif Jamal</au><au>Snoussi, Mejdi</au><au>Deshpande, Sumukh</au><au>Reddy, Mandadi Narsimha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>1</volume><issue>62</issue><spage>3777</spage><epage>3772</epage><pages>3777-3772</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an
in silico
molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (
R
g
) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions
in vivo
.
Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35515150</pmid><doi>10.1039/d0ra06379g</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6236-0920</orcidid><orcidid>https://orcid.org/0000-0002-5333-9505</orcidid><orcidid>https://orcid.org/0000-0002-7080-6822</orcidid><orcidid>https://orcid.org/0000-0002-2354-1382</orcidid><orcidid>https://orcid.org/0000-0002-9283-2124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-10, Vol.1 (62), p.3777-3772 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35515150 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Binding Chemistry Coronaviruses Drugs Hydrogen bonds In vivo methods and tests Interferon Metabolites Molecular docking Molecular dynamics Molecular interactions Papain Protease Proteins Ribonucleic acid RNA RNA polymerase Severe acute respiratory syndrome coronavirus 2 Side effects Vaccines Viral diseases Viral infections Viruses |
title | Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ilimaquinone%20(marine%20sponge%20metabolite)%20as%20a%20novel%20inhibitor%20of%20SARS-CoV-2%20key%20target%20proteins%20in%20comparison%20with%20suggested%20COVID-19%20drugs:%20designing,%20docking%20and%20molecular%20dynamics%20simulation%20study&rft.jtitle=RSC%20advances&rft.au=Surti,%20Malvi&rft.date=2020-10-13&rft.volume=1&rft.issue=62&rft.spage=3777&rft.epage=3772&rft.pages=3777-3772&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra06379g&rft_dat=%3Cproquest_pubme%3E2661082388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453628251&rft_id=info:pmid/35515150&rfr_iscdi=true |