Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study

The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-10, Vol.1 (62), p.3777-3772
Hauptverfasser: Surti, Malvi, Patel, Mitesh, Adnan, Mohd, Moin, Afrasim, Ashraf, Syed Amir, Siddiqui, Arif Jamal, Snoussi, Mejdi, Deshpande, Sumukh, Reddy, Mandadi Narsimha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3772
container_issue 62
container_start_page 3777
container_title RSC advances
container_volume 1
creator Surti, Malvi
Patel, Mitesh
Adnan, Mohd
Moin, Afrasim
Ashraf, Syed Amir
Siddiqui, Arif Jamal
Snoussi, Mejdi
Deshpande, Sumukh
Reddy, Mandadi Narsimha
description The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration ( R g ) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo . Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.
doi_str_mv 10.1039/d0ra06379g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35515150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661082388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXphTtoEJeCCPhjnXU4IK22UFaqVKmFXi3HdrJuEzu1naL9g_wuDFuWwgH7MGPPo1czo7conmL0FiNav9MoSFTRed09KPYJmlUlQVX98F6-VxzGeIXyqRgmFX5c7FHGcL5ov_i-6u0gbybrvDNwNMhgc4yjd52BwSTZ-N4m8wpkBAnO35oerFvbxiYfwLdwsTi_KJf-siRwbTaQZOhMgjH4ZKyLmQXlhzHLRu_gm01riFPXmZiMhuXZ5eq4xDXoMHXxPWgTbees696A9uo6JyCdhsH3Rk29DKA3Tg5WRYh2yB_JZs2YJr15UjxqZR_N4V08KL5--vhl-bk8PTtZLRenpWKEprJWPG9hpoghhjHeVERJPkdKE6k5RRXisslPjnVNajqjmtGmZaxRCEuKjKYHxYet7jg1g9HKuBRkL8aQlxg2wksr_q44uxadvxU1YnM8o1ng6E4g-Jspr0EMNirT99IZP0VBqgojTijnGX35D3rlp-DyeILMGK0IJwxn6vWWUsHHGEy7awYj8dMh4hidL3455CTDz--3v0N_-yEDL7ZAiGpX_WMxMeo2M8_-x9Affz_OsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453628251</pqid></control><display><type>article</type><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</creator><creatorcontrib>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</creatorcontrib><description>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration ( R g ) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo . Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra06379g</identifier><identifier>PMID: 35515150</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Chemistry ; Coronaviruses ; Drugs ; Hydrogen bonds ; In vivo methods and tests ; Interferon ; Metabolites ; Molecular docking ; Molecular dynamics ; Molecular interactions ; Papain ; Protease ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; Severe acute respiratory syndrome coronavirus 2 ; Side effects ; Vaccines ; Viral diseases ; Viral infections ; Viruses</subject><ispartof>RSC advances, 2020-10, Vol.1 (62), p.3777-3772</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</citedby><cites>FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</cites><orcidid>0000-0002-6236-0920 ; 0000-0002-5333-9505 ; 0000-0002-7080-6822 ; 0000-0002-2354-1382 ; 0000-0002-9283-2124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057143/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057143/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35515150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Surti, Malvi</creatorcontrib><creatorcontrib>Patel, Mitesh</creatorcontrib><creatorcontrib>Adnan, Mohd</creatorcontrib><creatorcontrib>Moin, Afrasim</creatorcontrib><creatorcontrib>Ashraf, Syed Amir</creatorcontrib><creatorcontrib>Siddiqui, Arif Jamal</creatorcontrib><creatorcontrib>Snoussi, Mejdi</creatorcontrib><creatorcontrib>Deshpande, Sumukh</creatorcontrib><creatorcontrib>Reddy, Mandadi Narsimha</creatorcontrib><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration ( R g ) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo . Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</description><subject>Binding</subject><subject>Chemistry</subject><subject>Coronaviruses</subject><subject>Drugs</subject><subject>Hydrogen bonds</subject><subject>In vivo methods and tests</subject><subject>Interferon</subject><subject>Metabolites</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Molecular interactions</subject><subject>Papain</subject><subject>Protease</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Side effects</subject><subject>Vaccines</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEolXphTtoEJeCCPhjnXU4IK22UFaqVKmFXi3HdrJuEzu1naL9g_wuDFuWwgH7MGPPo1czo7conmL0FiNav9MoSFTRed09KPYJmlUlQVX98F6-VxzGeIXyqRgmFX5c7FHGcL5ov_i-6u0gbybrvDNwNMhgc4yjd52BwSTZ-N4m8wpkBAnO35oerFvbxiYfwLdwsTi_KJf-siRwbTaQZOhMgjH4ZKyLmQXlhzHLRu_gm01riFPXmZiMhuXZ5eq4xDXoMHXxPWgTbees696A9uo6JyCdhsH3Rk29DKA3Tg5WRYh2yB_JZs2YJr15UjxqZR_N4V08KL5--vhl-bk8PTtZLRenpWKEprJWPG9hpoghhjHeVERJPkdKE6k5RRXisslPjnVNajqjmtGmZaxRCEuKjKYHxYet7jg1g9HKuBRkL8aQlxg2wksr_q44uxadvxU1YnM8o1ng6E4g-Jspr0EMNirT99IZP0VBqgojTijnGX35D3rlp-DyeILMGK0IJwxn6vWWUsHHGEy7awYj8dMh4hidL3455CTDz--3v0N_-yEDL7ZAiGpX_WMxMeo2M8_-x9Affz_OsA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Surti, Malvi</creator><creator>Patel, Mitesh</creator><creator>Adnan, Mohd</creator><creator>Moin, Afrasim</creator><creator>Ashraf, Syed Amir</creator><creator>Siddiqui, Arif Jamal</creator><creator>Snoussi, Mejdi</creator><creator>Deshpande, Sumukh</creator><creator>Reddy, Mandadi Narsimha</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6236-0920</orcidid><orcidid>https://orcid.org/0000-0002-5333-9505</orcidid><orcidid>https://orcid.org/0000-0002-7080-6822</orcidid><orcidid>https://orcid.org/0000-0002-2354-1382</orcidid><orcidid>https://orcid.org/0000-0002-9283-2124</orcidid></search><sort><creationdate>20201013</creationdate><title>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</title><author>Surti, Malvi ; Patel, Mitesh ; Adnan, Mohd ; Moin, Afrasim ; Ashraf, Syed Amir ; Siddiqui, Arif Jamal ; Snoussi, Mejdi ; Deshpande, Sumukh ; Reddy, Mandadi Narsimha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-9c80064c2e2e558b62ca870cd2ad830608ab70c81d929343d53bf55bc01a30ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding</topic><topic>Chemistry</topic><topic>Coronaviruses</topic><topic>Drugs</topic><topic>Hydrogen bonds</topic><topic>In vivo methods and tests</topic><topic>Interferon</topic><topic>Metabolites</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Molecular interactions</topic><topic>Papain</topic><topic>Protease</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Side effects</topic><topic>Vaccines</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surti, Malvi</creatorcontrib><creatorcontrib>Patel, Mitesh</creatorcontrib><creatorcontrib>Adnan, Mohd</creatorcontrib><creatorcontrib>Moin, Afrasim</creatorcontrib><creatorcontrib>Ashraf, Syed Amir</creatorcontrib><creatorcontrib>Siddiqui, Arif Jamal</creatorcontrib><creatorcontrib>Snoussi, Mejdi</creatorcontrib><creatorcontrib>Deshpande, Sumukh</creatorcontrib><creatorcontrib>Reddy, Mandadi Narsimha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surti, Malvi</au><au>Patel, Mitesh</au><au>Adnan, Mohd</au><au>Moin, Afrasim</au><au>Ashraf, Syed Amir</au><au>Siddiqui, Arif Jamal</au><au>Snoussi, Mejdi</au><au>Deshpande, Sumukh</au><au>Reddy, Mandadi Narsimha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>1</volume><issue>62</issue><spage>3777</spage><epage>3772</epage><pages>3777-3772</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration ( R g ) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo . Inhibitory potential of ilimaquinone (marine sponge metabolite) against nine essential SARS-CoV-2 target proteins, employing a molecular interaction and dynamics simulation approach.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35515150</pmid><doi>10.1039/d0ra06379g</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6236-0920</orcidid><orcidid>https://orcid.org/0000-0002-5333-9505</orcidid><orcidid>https://orcid.org/0000-0002-7080-6822</orcidid><orcidid>https://orcid.org/0000-0002-2354-1382</orcidid><orcidid>https://orcid.org/0000-0002-9283-2124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-10, Vol.1 (62), p.3777-3772
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35515150
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Binding
Chemistry
Coronaviruses
Drugs
Hydrogen bonds
In vivo methods and tests
Interferon
Metabolites
Molecular docking
Molecular dynamics
Molecular interactions
Papain
Protease
Proteins
Ribonucleic acid
RNA
RNA polymerase
Severe acute respiratory syndrome coronavirus 2
Side effects
Vaccines
Viral diseases
Viral infections
Viruses
title Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ilimaquinone%20(marine%20sponge%20metabolite)%20as%20a%20novel%20inhibitor%20of%20SARS-CoV-2%20key%20target%20proteins%20in%20comparison%20with%20suggested%20COVID-19%20drugs:%20designing,%20docking%20and%20molecular%20dynamics%20simulation%20study&rft.jtitle=RSC%20advances&rft.au=Surti,%20Malvi&rft.date=2020-10-13&rft.volume=1&rft.issue=62&rft.spage=3777&rft.epage=3772&rft.pages=3777-3772&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra06379g&rft_dat=%3Cproquest_pubme%3E2661082388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453628251&rft_id=info:pmid/35515150&rfr_iscdi=true