Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection

The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanobioscience 2023-01, Vol.22 (1), p.174-181
Hauptverfasser: Tayal, Shubham, Majumdar, Budhaditya, Bhattacharya, Sandip, Kanungo, Sayan
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 1
container_start_page 174
container_title IEEE transactions on nanobioscience
container_volume 22
creator Tayal, Shubham
Majumdar, Budhaditya
Bhattacharya, Sandip
Kanungo, Sayan
description The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as 1\times 10 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.
doi_str_mv 10.1109/TNB.2022.3172702
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35507608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9768669</ieee_id><sourcerecordid>2659603375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</originalsourceid><addsrcrecordid>eNpdkTtPHDEURi1ExCv0SEjIEg3NLH6M7XEJBPLQQiiWeuTxXCuDPGOwPcUW-e_xZjcUqXwln--zfA9CZ5QsKCX6evV0u2CEsQWniinC9tARFaKpmOR6fzNzWVFW00N0nNIrIVRJoQ_QIReCKEmaI_T7GaILcTSTBXwzGb9OQ8LB4fwL8JcBPNgcB2u8X-PH0M_eZOjxj3myeQhTtYSU8JOZQp47wA-F7_G9cyWEV9FMpSuHiMsD-HYIYyhtsy-9kOFv_jP65IxPcLo7T9DLw_3q7lu1_Pn1-93NsrK8VrlixGpOm7pXzNay7l3flaHru85RLrSQ3NSaqqZR0pU_iqbhHUgLTlnOjHT8BF1te99ieJ8h5XYckgXvzQRhTi0ra5GEcyUKevkf-hrmWBZTKCV0TVhNaKHIlrIxpBTBtW9xGE1ct5S0GzVtUdNu1LQ7NSVysSueuxH6j8A_FwU43wIDAHxcayUbKTX_A4qokwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2759402401</pqid></control><display><type>magazinearticle</type><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</creator><creatorcontrib>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</creatorcontrib><description>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1\times 10 &lt;/tex-math&gt;&lt;/inline-formula&gt; 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2022.3172702</identifier><identifier>PMID: 35507608</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biomolecules ; Biosensing Techniques ; Biosensors ; Carrier transport ; Conjugation ; Diagenesis ; Dielectric constant ; dielectric modulation ; Dielectric strength ; Electric fields ; Electric potential ; Electrochemistry ; Electrostatic properties ; Electrostatics ; Field effect transistors ; junction-less FET ; Logic gates ; MOSFET ; Nanotechnology ; nanotube ; Nanotubes ; Nanotubes - chemistry ; Nanowires ; Parameter sensitivity ; Permittivity ; Semiconductor devices ; sensitivity ; TCAD ; Threshold voltage ; Transistors ; Transistors, Electronic ; Voltage</subject><ispartof>IEEE transactions on nanobioscience, 2023-01, Vol.22 (1), p.174-181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</citedby><cites>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</cites><orcidid>0000-0002-8259-7626 ; 0000-0002-3968-2681 ; 0000-0002-7278-8023 ; 0000-0001-7500-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9768669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9768669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35507608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayal, Shubham</creatorcontrib><creatorcontrib>Majumdar, Budhaditya</creatorcontrib><creatorcontrib>Bhattacharya, Sandip</creatorcontrib><creatorcontrib>Kanungo, Sayan</creatorcontrib><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1\times 10 &lt;/tex-math&gt;&lt;/inline-formula&gt; 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</description><subject>Biological system modeling</subject><subject>Biomolecules</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Carrier transport</subject><subject>Conjugation</subject><subject>Diagenesis</subject><subject>Dielectric constant</subject><subject>dielectric modulation</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Field effect transistors</subject><subject>junction-less FET</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>Nanotechnology</subject><subject>nanotube</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Nanowires</subject><subject>Parameter sensitivity</subject><subject>Permittivity</subject><subject>Semiconductor devices</subject><subject>sensitivity</subject><subject>TCAD</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><subject>Voltage</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkTtPHDEURi1ExCv0SEjIEg3NLH6M7XEJBPLQQiiWeuTxXCuDPGOwPcUW-e_xZjcUqXwln--zfA9CZ5QsKCX6evV0u2CEsQWniinC9tARFaKpmOR6fzNzWVFW00N0nNIrIVRJoQ_QIReCKEmaI_T7GaILcTSTBXwzGb9OQ8LB4fwL8JcBPNgcB2u8X-PH0M_eZOjxj3myeQhTtYSU8JOZQp47wA-F7_G9cyWEV9FMpSuHiMsD-HYIYyhtsy-9kOFv_jP65IxPcLo7T9DLw_3q7lu1_Pn1-93NsrK8VrlixGpOm7pXzNay7l3flaHru85RLrSQ3NSaqqZR0pU_iqbhHUgLTlnOjHT8BF1te99ieJ8h5XYckgXvzQRhTi0ra5GEcyUKevkf-hrmWBZTKCV0TVhNaKHIlrIxpBTBtW9xGE1ct5S0GzVtUdNu1LQ7NSVysSueuxH6j8A_FwU43wIDAHxcayUbKTX_A4qokwQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Tayal, Shubham</creator><creator>Majumdar, Budhaditya</creator><creator>Bhattacharya, Sandip</creator><creator>Kanungo, Sayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8259-7626</orcidid><orcidid>https://orcid.org/0000-0002-3968-2681</orcidid><orcidid>https://orcid.org/0000-0002-7278-8023</orcidid><orcidid>https://orcid.org/0000-0001-7500-6982</orcidid></search><sort><creationdate>202301</creationdate><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><author>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Biomolecules</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Carrier transport</topic><topic>Conjugation</topic><topic>Diagenesis</topic><topic>Dielectric constant</topic><topic>dielectric modulation</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Field effect transistors</topic><topic>junction-less FET</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>Nanotechnology</topic><topic>nanotube</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Nanowires</topic><topic>Parameter sensitivity</topic><topic>Permittivity</topic><topic>Semiconductor devices</topic><topic>sensitivity</topic><topic>TCAD</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Tayal, Shubham</creatorcontrib><creatorcontrib>Majumdar, Budhaditya</creatorcontrib><creatorcontrib>Bhattacharya, Sandip</creatorcontrib><creatorcontrib>Kanungo, Sayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tayal, Shubham</au><au>Majumdar, Budhaditya</au><au>Bhattacharya, Sandip</au><au>Kanungo, Sayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2023-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1\times 10 &lt;/tex-math&gt;&lt;/inline-formula&gt; 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35507608</pmid><doi>10.1109/TNB.2022.3172702</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8259-7626</orcidid><orcidid>https://orcid.org/0000-0002-3968-2681</orcidid><orcidid>https://orcid.org/0000-0002-7278-8023</orcidid><orcidid>https://orcid.org/0000-0001-7500-6982</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1241
ispartof IEEE transactions on nanobioscience, 2023-01, Vol.22 (1), p.174-181
issn 1536-1241
1558-2639
language eng
recordid cdi_pubmed_primary_35507608
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biomolecules
Biosensing Techniques
Biosensors
Carrier transport
Conjugation
Diagenesis
Dielectric constant
dielectric modulation
Dielectric strength
Electric fields
Electric potential
Electrochemistry
Electrostatic properties
Electrostatics
Field effect transistors
junction-less FET
Logic gates
MOSFET
Nanotechnology
nanotube
Nanotubes
Nanotubes - chemistry
Nanowires
Parameter sensitivity
Permittivity
Semiconductor devices
sensitivity
TCAD
Threshold voltage
Transistors
Transistors, Electronic
Voltage
title Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20the%20Dielectrically%20Modulated%20Junction-Less%20Nanotube%20Field%20Effect%20Transistor%20for%20Biomolecule%20Detection&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Tayal,%20Shubham&rft.date=2023-01&rft.volume=22&rft.issue=1&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2022.3172702&rft_dat=%3Cproquest_RIE%3E2659603375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759402401&rft_id=info:pmid/35507608&rft_ieee_id=9768669&rfr_iscdi=true