Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection
The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrica...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanobioscience 2023-01, Vol.22 (1), p.174-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 1 |
container_start_page | 174 |
container_title | IEEE transactions on nanobioscience |
container_volume | 22 |
creator | Tayal, Shubham Majumdar, Budhaditya Bhattacharya, Sandip Kanungo, Sayan |
description | The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as 1\times 10 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants. |
doi_str_mv | 10.1109/TNB.2022.3172702 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35507608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9768669</ieee_id><sourcerecordid>2659603375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</originalsourceid><addsrcrecordid>eNpdkTtPHDEURi1ExCv0SEjIEg3NLH6M7XEJBPLQQiiWeuTxXCuDPGOwPcUW-e_xZjcUqXwln--zfA9CZ5QsKCX6evV0u2CEsQWniinC9tARFaKpmOR6fzNzWVFW00N0nNIrIVRJoQ_QIReCKEmaI_T7GaILcTSTBXwzGb9OQ8LB4fwL8JcBPNgcB2u8X-PH0M_eZOjxj3myeQhTtYSU8JOZQp47wA-F7_G9cyWEV9FMpSuHiMsD-HYIYyhtsy-9kOFv_jP65IxPcLo7T9DLw_3q7lu1_Pn1-93NsrK8VrlixGpOm7pXzNay7l3flaHru85RLrSQ3NSaqqZR0pU_iqbhHUgLTlnOjHT8BF1te99ieJ8h5XYckgXvzQRhTi0ra5GEcyUKevkf-hrmWBZTKCV0TVhNaKHIlrIxpBTBtW9xGE1ct5S0GzVtUdNu1LQ7NSVysSueuxH6j8A_FwU43wIDAHxcayUbKTX_A4qokwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2759402401</pqid></control><display><type>magazinearticle</type><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</creator><creatorcontrib>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</creatorcontrib><description>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as <inline-formula> <tex-math notation="LaTeX">1\times 10 </tex-math></inline-formula> 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2022.3172702</identifier><identifier>PMID: 35507608</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biomolecules ; Biosensing Techniques ; Biosensors ; Carrier transport ; Conjugation ; Diagenesis ; Dielectric constant ; dielectric modulation ; Dielectric strength ; Electric fields ; Electric potential ; Electrochemistry ; Electrostatic properties ; Electrostatics ; Field effect transistors ; junction-less FET ; Logic gates ; MOSFET ; Nanotechnology ; nanotube ; Nanotubes ; Nanotubes - chemistry ; Nanowires ; Parameter sensitivity ; Permittivity ; Semiconductor devices ; sensitivity ; TCAD ; Threshold voltage ; Transistors ; Transistors, Electronic ; Voltage</subject><ispartof>IEEE transactions on nanobioscience, 2023-01, Vol.22 (1), p.174-181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</citedby><cites>FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</cites><orcidid>0000-0002-8259-7626 ; 0000-0002-3968-2681 ; 0000-0002-7278-8023 ; 0000-0001-7500-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9768669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9768669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35507608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayal, Shubham</creatorcontrib><creatorcontrib>Majumdar, Budhaditya</creatorcontrib><creatorcontrib>Bhattacharya, Sandip</creatorcontrib><creatorcontrib>Kanungo, Sayan</creatorcontrib><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as <inline-formula> <tex-math notation="LaTeX">1\times 10 </tex-math></inline-formula> 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</description><subject>Biological system modeling</subject><subject>Biomolecules</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Carrier transport</subject><subject>Conjugation</subject><subject>Diagenesis</subject><subject>Dielectric constant</subject><subject>dielectric modulation</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Field effect transistors</subject><subject>junction-less FET</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>Nanotechnology</subject><subject>nanotube</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Nanowires</subject><subject>Parameter sensitivity</subject><subject>Permittivity</subject><subject>Semiconductor devices</subject><subject>sensitivity</subject><subject>TCAD</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><subject>Voltage</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkTtPHDEURi1ExCv0SEjIEg3NLH6M7XEJBPLQQiiWeuTxXCuDPGOwPcUW-e_xZjcUqXwln--zfA9CZ5QsKCX6evV0u2CEsQWniinC9tARFaKpmOR6fzNzWVFW00N0nNIrIVRJoQ_QIReCKEmaI_T7GaILcTSTBXwzGb9OQ8LB4fwL8JcBPNgcB2u8X-PH0M_eZOjxj3myeQhTtYSU8JOZQp47wA-F7_G9cyWEV9FMpSuHiMsD-HYIYyhtsy-9kOFv_jP65IxPcLo7T9DLw_3q7lu1_Pn1-93NsrK8VrlixGpOm7pXzNay7l3flaHru85RLrSQ3NSaqqZR0pU_iqbhHUgLTlnOjHT8BF1te99ieJ8h5XYckgXvzQRhTi0ra5GEcyUKevkf-hrmWBZTKCV0TVhNaKHIlrIxpBTBtW9xGE1ct5S0GzVtUdNu1LQ7NSVysSueuxH6j8A_FwU43wIDAHxcayUbKTX_A4qokwQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Tayal, Shubham</creator><creator>Majumdar, Budhaditya</creator><creator>Bhattacharya, Sandip</creator><creator>Kanungo, Sayan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8259-7626</orcidid><orcidid>https://orcid.org/0000-0002-3968-2681</orcidid><orcidid>https://orcid.org/0000-0002-7278-8023</orcidid><orcidid>https://orcid.org/0000-0001-7500-6982</orcidid></search><sort><creationdate>202301</creationdate><title>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</title><author>Tayal, Shubham ; Majumdar, Budhaditya ; Bhattacharya, Sandip ; Kanungo, Sayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-20c93184d72c464dfdb2c4bdbbf1359563a49178876f0175883be6cef7c32a6f3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological system modeling</topic><topic>Biomolecules</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Carrier transport</topic><topic>Conjugation</topic><topic>Diagenesis</topic><topic>Dielectric constant</topic><topic>dielectric modulation</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Field effect transistors</topic><topic>junction-less FET</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>Nanotechnology</topic><topic>nanotube</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Nanowires</topic><topic>Parameter sensitivity</topic><topic>Permittivity</topic><topic>Semiconductor devices</topic><topic>sensitivity</topic><topic>TCAD</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Tayal, Shubham</creatorcontrib><creatorcontrib>Majumdar, Budhaditya</creatorcontrib><creatorcontrib>Bhattacharya, Sandip</creatorcontrib><creatorcontrib>Kanungo, Sayan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tayal, Shubham</au><au>Majumdar, Budhaditya</au><au>Bhattacharya, Sandip</au><au>Kanungo, Sayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2023-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>The design of a high-performance Dielectrically Modulated Field Effect Transistor (DMFET) with smaller device dimension (channel length ≤ 100nm) has recently drawn significant research attention for point-of-care (POC) diagenesis applications. Driven by this paradigm, a Hetero-Gate Metal Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor (DM-JLNFET) architecture is introduced and systematically investigated for label-free electrochemical biosensing application with the help of extensive numerical device simulations. The DM-JLNFET is carefully designed to exploit the advantages of superior gate control over channel electrostatics and electron injection component as well as strong immunity towards the short channel effects that lead to a notably high sensing performance compared to its conventional counterparts. In this context, the underlying physics of the transduction mechanism is analyzed in detail based on the device electrostatics and the carrier transport mechanism. The sensing performance of the proposed biosensor is quantified in terms of the drain current and threshold voltage sensitivities, which represents the relative modulations in these parameters with biomolecule conjugation. Typically, the DM-JLNFET exhibits a drain current and threshold voltage sensitivities as high as <inline-formula> <tex-math notation="LaTeX">1\times 10 </tex-math></inline-formula> 12 and 0.70, respectively, for biomolecule dielectric constant above 2. Furthermore, the sensing performance demonstrates strong immunities towards non-uniform cavity occupancy. Finally, extensive comparative performance analysis with Dielectrically Modulated Nanowire Field Effect Transistor (DM-NWFET) is performed. The results exhibit that the proposed DM-JLNFET can offer more than 100% and eight orders of magnitude improvements in the threshold voltage and drain current sensitivities, respectively, for a range of small biomolecule dielectric constants.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35507608</pmid><doi>10.1109/TNB.2022.3172702</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8259-7626</orcidid><orcidid>https://orcid.org/0000-0002-3968-2681</orcidid><orcidid>https://orcid.org/0000-0002-7278-8023</orcidid><orcidid>https://orcid.org/0000-0001-7500-6982</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1241 |
ispartof | IEEE transactions on nanobioscience, 2023-01, Vol.22 (1), p.174-181 |
issn | 1536-1241 1558-2639 |
language | eng |
recordid | cdi_pubmed_primary_35507608 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Biomolecules Biosensing Techniques Biosensors Carrier transport Conjugation Diagenesis Dielectric constant dielectric modulation Dielectric strength Electric fields Electric potential Electrochemistry Electrostatic properties Electrostatics Field effect transistors junction-less FET Logic gates MOSFET Nanotechnology nanotube Nanotubes Nanotubes - chemistry Nanowires Parameter sensitivity Permittivity Semiconductor devices sensitivity TCAD Threshold voltage Transistors Transistors, Electronic Voltage |
title | Performance Analysis of the Dielectrically Modulated Junction-Less Nanotube Field Effect Transistor for Biomolecule Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20the%20Dielectrically%20Modulated%20Junction-Less%20Nanotube%20Field%20Effect%20Transistor%20for%20Biomolecule%20Detection&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Tayal,%20Shubham&rft.date=2023-01&rft.volume=22&rft.issue=1&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2022.3172702&rft_dat=%3Cproquest_RIE%3E2659603375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759402401&rft_id=info:pmid/35507608&rft_ieee_id=9768669&rfr_iscdi=true |