Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking

Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip join...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.1203-1212
Hauptverfasser: van der Kooij, Herman, Fricke, Simone S., Veld, Ronald C. van't, Prieto, Ander Vallinas, Keemink, Arvid Q. L., Schouten, Alfred C., van Asseldonk, Edwin H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1212
container_issue
container_start_page 1203
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 30
creator van der Kooij, Herman
Fricke, Simone S.
Veld, Ronald C. van't
Prieto, Ander Vallinas
Keemink, Arvid Q. L.
Schouten, Alfred C.
van Asseldonk, Edwin H. F.
description Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (
doi_str_mv 10.1109/TNSRE.2022.3172497
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35503817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767839</ieee_id><doaj_id>oai_doaj_org_article_146353b4175e4779917f4ddb1f9fe4af</doaj_id><sourcerecordid>2659230865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3767-a45cb43c9f90616dad94d71d979e577ceba830610f1bb4de519cc5f491a510da3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERf_AFwAJReLCJVtPbMfxEZVCl1ZQ0SKOlmOPWy_ZeOskqvj2ON1lDz3NaOb3nux5hLwFugCg6vT2-83P80VFq2rBQFZcyRfkCIRoSloBfTn3jJecVfSQHA_DilKQtZCvyCETgrIG5BG5Xjrsx-CDNWOIfRF9cRE2heldcdkjFt9i6Mdiud6gM73F4vOUQn9XjPdY3DzO3fW9GXCW_Tbdnzx4TQ686QZ8s6sn5NeX89uzi_Lqx9fl2aer0jJZy9JwYVvOrPKK1lA74xR3EpySCoWUFlvTsLyhHtqWOxSgrBWeKzACqDPshCy3vi6ald6ksDbpr44m6KdBTHfapDHYDjXwmgnWcpACuZRKgfTcuRa88siNz14ft16bFB8mHEa9DoPFrjM9xmnQVS1UxWhTi4x-eIau4pT6_NNM1aLhFBqWqWpL2RSHIaHfPxConrPTT9npOTu9yy6L3u-sp3aNbi_5H1YG3m2BgIj7tcrnbJhi_wD0IJr7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665840183</pqid></control><display><type>article</type><title>Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van der Kooij, Herman ; Fricke, Simone S. ; Veld, Ronald C. van't ; Prieto, Ander Vallinas ; Keemink, Arvid Q. L. ; Schouten, Alfred C. ; van Asseldonk, Edwin H. F.</creator><creatorcontrib>van der Kooij, Herman ; Fricke, Simone S. ; Veld, Ronald C. van't ; Prieto, Ander Vallinas ; Keemink, Arvid Q. L. ; Schouten, Alfred C. ; van Asseldonk, Edwin H. F.</creatorcontrib><description>Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (&lt;5N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2022.3172497</identifier><identifier>PMID: 35503817</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Ankle ; Decision making ; Exoskeleton ; Exoskeletons ; Force ; Gait ; Gait training ; Hip ; hip stiffness ; Impedance ; joint impedance ; Joints (anatomy) ; Knee ; knee stiffness ; Leg ; Legged locomotion ; Perturbation ; Perturbation methods ; Prostheses ; Prosthetics ; stiffness ; system identification ; Thigh ; transparency ; Treadmills ; Walking</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1203-1212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3767-a45cb43c9f90616dad94d71d979e577ceba830610f1bb4de519cc5f491a510da3</citedby><cites>FETCH-LOGICAL-c3767-a45cb43c9f90616dad94d71d979e577ceba830610f1bb4de519cc5f491a510da3</cites><orcidid>0000-0003-1534-2348 ; 0000-0001-7366-2898 ; 0000-0003-3149-6726 ; 0000-0002-1285-2572 ; 0000-0002-7926-3262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35503817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Kooij, Herman</creatorcontrib><creatorcontrib>Fricke, Simone S.</creatorcontrib><creatorcontrib>Veld, Ronald C. van't</creatorcontrib><creatorcontrib>Prieto, Ander Vallinas</creatorcontrib><creatorcontrib>Keemink, Arvid Q. L.</creatorcontrib><creatorcontrib>Schouten, Alfred C.</creatorcontrib><creatorcontrib>van Asseldonk, Edwin H. F.</creatorcontrib><title>Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (&lt;5N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.</description><subject>Actuators</subject><subject>Ankle</subject><subject>Decision making</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Gait</subject><subject>Gait training</subject><subject>Hip</subject><subject>hip stiffness</subject><subject>Impedance</subject><subject>joint impedance</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>knee stiffness</subject><subject>Leg</subject><subject>Legged locomotion</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>stiffness</subject><subject>system identification</subject><subject>Thigh</subject><subject>transparency</subject><subject>Treadmills</subject><subject>Walking</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9v1DAQxS1ERf_AFwAJReLCJVtPbMfxEZVCl1ZQ0SKOlmOPWy_ZeOskqvj2ON1lDz3NaOb3nux5hLwFugCg6vT2-83P80VFq2rBQFZcyRfkCIRoSloBfTn3jJecVfSQHA_DilKQtZCvyCETgrIG5BG5Xjrsx-CDNWOIfRF9cRE2heldcdkjFt9i6Mdiud6gM73F4vOUQn9XjPdY3DzO3fW9GXCW_Tbdnzx4TQ686QZ8s6sn5NeX89uzi_Lqx9fl2aer0jJZy9JwYVvOrPKK1lA74xR3EpySCoWUFlvTsLyhHtqWOxSgrBWeKzACqDPshCy3vi6ald6ksDbpr44m6KdBTHfapDHYDjXwmgnWcpACuZRKgfTcuRa88siNz14ft16bFB8mHEa9DoPFrjM9xmnQVS1UxWhTi4x-eIau4pT6_NNM1aLhFBqWqWpL2RSHIaHfPxConrPTT9npOTu9yy6L3u-sp3aNbi_5H1YG3m2BgIj7tcrnbJhi_wD0IJr7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>van der Kooij, Herman</creator><creator>Fricke, Simone S.</creator><creator>Veld, Ronald C. van't</creator><creator>Prieto, Ander Vallinas</creator><creator>Keemink, Arvid Q. L.</creator><creator>Schouten, Alfred C.</creator><creator>van Asseldonk, Edwin H. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1534-2348</orcidid><orcidid>https://orcid.org/0000-0001-7366-2898</orcidid><orcidid>https://orcid.org/0000-0003-3149-6726</orcidid><orcidid>https://orcid.org/0000-0002-1285-2572</orcidid><orcidid>https://orcid.org/0000-0002-7926-3262</orcidid></search><sort><creationdate>2022</creationdate><title>Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking</title><author>van der Kooij, Herman ; Fricke, Simone S. ; Veld, Ronald C. van't ; Prieto, Ander Vallinas ; Keemink, Arvid Q. L. ; Schouten, Alfred C. ; van Asseldonk, Edwin H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3767-a45cb43c9f90616dad94d71d979e577ceba830610f1bb4de519cc5f491a510da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Ankle</topic><topic>Decision making</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Gait</topic><topic>Gait training</topic><topic>Hip</topic><topic>hip stiffness</topic><topic>Impedance</topic><topic>joint impedance</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>knee stiffness</topic><topic>Leg</topic><topic>Legged locomotion</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>stiffness</topic><topic>system identification</topic><topic>Thigh</topic><topic>transparency</topic><topic>Treadmills</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Kooij, Herman</creatorcontrib><creatorcontrib>Fricke, Simone S.</creatorcontrib><creatorcontrib>Veld, Ronald C. van't</creatorcontrib><creatorcontrib>Prieto, Ander Vallinas</creatorcontrib><creatorcontrib>Keemink, Arvid Q. L.</creatorcontrib><creatorcontrib>Schouten, Alfred C.</creatorcontrib><creatorcontrib>van Asseldonk, Edwin H. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Kooij, Herman</au><au>Fricke, Simone S.</au><au>Veld, Ronald C. van't</au><au>Prieto, Ander Vallinas</au><au>Keemink, Arvid Q. L.</au><au>Schouten, Alfred C.</au><au>van Asseldonk, Edwin H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>1203</spage><epage>1212</epage><pages>1203-1212</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (&lt;5N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35503817</pmid><doi>10.1109/TNSRE.2022.3172497</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1534-2348</orcidid><orcidid>https://orcid.org/0000-0001-7366-2898</orcidid><orcidid>https://orcid.org/0000-0003-3149-6726</orcidid><orcidid>https://orcid.org/0000-0002-1285-2572</orcidid><orcidid>https://orcid.org/0000-0002-7926-3262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2022, Vol.30, p.1203-1212
issn 1534-4320
1558-0210
language eng
recordid cdi_pubmed_primary_35503817
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Actuators
Ankle
Decision making
Exoskeleton
Exoskeletons
Force
Gait
Gait training
Hip
hip stiffness
Impedance
joint impedance
Joints (anatomy)
Knee
knee stiffness
Leg
Legged locomotion
Perturbation
Perturbation methods
Prostheses
Prosthetics
stiffness
system identification
Thigh
transparency
Treadmills
Walking
title Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Hip%20and%20Knee%20Joint%20Impedance%20During%20the%20Swing%20Phase%20of%20Walking&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=van%20der%20Kooij,%20Herman&rft.date=2022&rft.volume=30&rft.spage=1203&rft.epage=1212&rft.pages=1203-1212&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2022.3172497&rft_dat=%3Cproquest_pubme%3E2659230865%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665840183&rft_id=info:pmid/35503817&rft_ieee_id=9767839&rft_doaj_id=oai_doaj_org_article_146353b4175e4779917f4ddb1f9fe4af&rfr_iscdi=true