Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks

Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e. , Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.3386-3398
Hauptverfasser: Luo, Gen, Zhou, Yiyi, Sun, Xiaoshuai, Wang, Yan, Cao, Liujuan, Wu, Yongjian, Huang, Feiyue, Ji, Rongrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3398
container_issue
container_start_page 3386
container_title IEEE transactions on image processing
container_volume 31
creator Luo, Gen
Zhou, Yiyi
Sun, Xiaoshuai
Wang, Yan
Cao, Liujuan
Wu, Yongjian
Huang, Feiyue
Ji, Rongrong
description Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e. , Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address this issue, we introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer . LW-Transformer applies Group-wise Transformation to reduce both the parameters and computations of Transformer, while also preserving its two main properties, i.e. , the efficient attention modeling on diverse subspaces of MHA, and the expanding-scaling feature transformation of FFN. We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets. Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks. To examine the generalization ability, we apply LW-Transformer to the task of image classification, and build its network based on a recently proposed image Transformer called Swin-Transformer, where the effectiveness can be also confirmed.
doi_str_mv 10.1109/TIP.2021.3139234
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35471883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9763437</ieee_id><sourcerecordid>2656199375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d8bab73bab46d8e4bd68b2bf1391c0158d5f1de39762c8392b8033ba52b646a73</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRrFbvgiABL1627vcmRylaCwU9RD14CJtkU1ObbN1NKP73Tmmt4GX2wfzesO8hdEHJiFKS3KbT5xEjjI445Qnj4gCd0ERQTIhgh6CJ1FhTkQzQaQgLQqiQVB2jAZdC0zjmJ-g9dWvjyxDN6vlHt7abGaXetKFyvrE-eq1NNPGuX-G3Oti_lelq10aggAggsWlLPDPtvDdzwEz4DGfoqDLLYM937xC9PNyn40c8e5pMx3czXHChO1zGuck1hyFUGVuRlyrOWV5BJFoQKuNSVrS0PNGKFTHkzGPCAZcsV0IZzYfoZnt35d1Xb0OXNXUo7HJpWuv6kDElFU0SriWg1__Qhet9C78DSjGSKC0EUGRLFd6F4G2VrXzdGP-dUZJtis-g-GxTfLYrHixXu8N93thyb_htGoDLLVBba_dryARmzX8AAOmGuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662096744</pqid></control><display><type>article</type><title>Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Gen ; Zhou, Yiyi ; Sun, Xiaoshuai ; Wang, Yan ; Cao, Liujuan ; Wu, Yongjian ; Huang, Feiyue ; Ji, Rongrong</creator><creatorcontrib>Luo, Gen ; Zhou, Yiyi ; Sun, Xiaoshuai ; Wang, Yan ; Cao, Liujuan ; Wu, Yongjian ; Huang, Feiyue ; Ji, Rongrong</creatorcontrib><description>Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e. , Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address this issue, we introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer . LW-Transformer applies Group-wise Transformation to reduce both the parameters and computations of Transformer, while also preserving its two main properties, i.e. , the efficient attention modeling on diverse subspaces of MHA, and the expanding-scaling feature transformation of FFN. We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets. Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks. To examine the generalization ability, we apply LW-Transformer to the task of image classification, and build its network based on a recently proposed image Transformer called Swin-Transformer, where the effectiveness can be also confirmed.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3139234</identifier><identifier>PMID: 35471883</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Benchmark testing ; Computational modeling ; Convolution ; Head ; image captioning ; Image classification ; Lightweight ; Lightweight transformer ; Parameters ; reference expression comprehension ; Subspaces ; Task analysis ; Transformations ; Transformers ; visual question answering ; Visualization ; Writing instruction</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.3386-3398</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d8bab73bab46d8e4bd68b2bf1391c0158d5f1de39762c8392b8033ba52b646a73</citedby><cites>FETCH-LOGICAL-c347t-d8bab73bab46d8e4bd68b2bf1391c0158d5f1de39762c8392b8033ba52b646a73</cites><orcidid>0000-0002-7645-9606 ; 0000-0002-5110-4526 ; 0000-0003-3912-9306 ; 0000-0001-5334-1843 ; 0000-0001-9163-2932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9763437$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9763437$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35471883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Gen</creatorcontrib><creatorcontrib>Zhou, Yiyi</creatorcontrib><creatorcontrib>Sun, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cao, Liujuan</creatorcontrib><creatorcontrib>Wu, Yongjian</creatorcontrib><creatorcontrib>Huang, Feiyue</creatorcontrib><creatorcontrib>Ji, Rongrong</creatorcontrib><title>Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e. , Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address this issue, we introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer . LW-Transformer applies Group-wise Transformation to reduce both the parameters and computations of Transformer, while also preserving its two main properties, i.e. , the efficient attention modeling on diverse subspaces of MHA, and the expanding-scaling feature transformation of FFN. We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets. Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks. To examine the generalization ability, we apply LW-Transformer to the task of image classification, and build its network based on a recently proposed image Transformer called Swin-Transformer, where the effectiveness can be also confirmed.</description><subject>Benchmark testing</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Head</subject><subject>image captioning</subject><subject>Image classification</subject><subject>Lightweight</subject><subject>Lightweight transformer</subject><subject>Parameters</subject><subject>reference expression comprehension</subject><subject>Subspaces</subject><subject>Task analysis</subject><subject>Transformations</subject><subject>Transformers</subject><subject>visual question answering</subject><subject>Visualization</subject><subject>Writing instruction</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRrFbvgiABL1627vcmRylaCwU9RD14CJtkU1ObbN1NKP73Tmmt4GX2wfzesO8hdEHJiFKS3KbT5xEjjI445Qnj4gCd0ERQTIhgh6CJ1FhTkQzQaQgLQqiQVB2jAZdC0zjmJ-g9dWvjyxDN6vlHt7abGaXetKFyvrE-eq1NNPGuX-G3Oti_lelq10aggAggsWlLPDPtvDdzwEz4DGfoqDLLYM937xC9PNyn40c8e5pMx3czXHChO1zGuck1hyFUGVuRlyrOWV5BJFoQKuNSVrS0PNGKFTHkzGPCAZcsV0IZzYfoZnt35d1Xb0OXNXUo7HJpWuv6kDElFU0SriWg1__Qhet9C78DSjGSKC0EUGRLFd6F4G2VrXzdGP-dUZJtis-g-GxTfLYrHixXu8N93thyb_htGoDLLVBba_dryARmzX8AAOmGuA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Luo, Gen</creator><creator>Zhou, Yiyi</creator><creator>Sun, Xiaoshuai</creator><creator>Wang, Yan</creator><creator>Cao, Liujuan</creator><creator>Wu, Yongjian</creator><creator>Huang, Feiyue</creator><creator>Ji, Rongrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7645-9606</orcidid><orcidid>https://orcid.org/0000-0002-5110-4526</orcidid><orcidid>https://orcid.org/0000-0003-3912-9306</orcidid><orcidid>https://orcid.org/0000-0001-5334-1843</orcidid><orcidid>https://orcid.org/0000-0001-9163-2932</orcidid></search><sort><creationdate>2022</creationdate><title>Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks</title><author>Luo, Gen ; Zhou, Yiyi ; Sun, Xiaoshuai ; Wang, Yan ; Cao, Liujuan ; Wu, Yongjian ; Huang, Feiyue ; Ji, Rongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d8bab73bab46d8e4bd68b2bf1391c0158d5f1de39762c8392b8033ba52b646a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmark testing</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Head</topic><topic>image captioning</topic><topic>Image classification</topic><topic>Lightweight</topic><topic>Lightweight transformer</topic><topic>Parameters</topic><topic>reference expression comprehension</topic><topic>Subspaces</topic><topic>Task analysis</topic><topic>Transformations</topic><topic>Transformers</topic><topic>visual question answering</topic><topic>Visualization</topic><topic>Writing instruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Gen</creatorcontrib><creatorcontrib>Zhou, Yiyi</creatorcontrib><creatorcontrib>Sun, Xiaoshuai</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Cao, Liujuan</creatorcontrib><creatorcontrib>Wu, Yongjian</creatorcontrib><creatorcontrib>Huang, Feiyue</creatorcontrib><creatorcontrib>Ji, Rongrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Gen</au><au>Zhou, Yiyi</au><au>Sun, Xiaoshuai</au><au>Wang, Yan</au><au>Cao, Liujuan</au><au>Wu, Yongjian</au><au>Huang, Feiyue</au><au>Ji, Rongrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>3386</spage><epage>3398</epage><pages>3386-3398</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Despite the exciting performance, Transformer is criticized for its excessive parameters and computation cost. However, compressing Transformer remains as an open problem due to its internal complexity of the layer designs, i.e. , Multi-Head Attention (MHA) and Feed-Forward Network (FFN). To address this issue, we introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer . LW-Transformer applies Group-wise Transformation to reduce both the parameters and computations of Transformer, while also preserving its two main properties, i.e. , the efficient attention modeling on diverse subspaces of MHA, and the expanding-scaling feature transformation of FFN. We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets. Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks. To examine the generalization ability, we apply LW-Transformer to the task of image classification, and build its network based on a recently proposed image Transformer called Swin-Transformer, where the effectiveness can be also confirmed.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35471883</pmid><doi>10.1109/TIP.2021.3139234</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7645-9606</orcidid><orcidid>https://orcid.org/0000-0002-5110-4526</orcidid><orcidid>https://orcid.org/0000-0003-3912-9306</orcidid><orcidid>https://orcid.org/0000-0001-5334-1843</orcidid><orcidid>https://orcid.org/0000-0001-9163-2932</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.3386-3398
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_35471883
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Computational modeling
Convolution
Head
image captioning
Image classification
Lightweight
Lightweight transformer
Parameters
reference expression comprehension
Subspaces
Task analysis
Transformations
Transformers
visual question answering
Visualization
Writing instruction
title Towards Lightweight Transformer Via Group-Wise Transformation for Vision-and-Language Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Lightweight%20Transformer%20Via%20Group-Wise%20Transformation%20for%20Vision-and-Language%20Tasks&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Luo,%20Gen&rft.date=2022&rft.volume=31&rft.spage=3386&rft.epage=3398&rft.pages=3386-3398&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3139234&rft_dat=%3Cproquest_RIE%3E2656199375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662096744&rft_id=info:pmid/35471883&rft_ieee_id=9763437&rfr_iscdi=true