Structure and energetics of liquid water-hydroxyl layers on Pt(111)

The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (17), p.9885-989
Hauptverfasser: Mikkelsen, August E. G, Kristoffersen, Henrik H, Schiøtz, Jakob, Vegge, Tejs, Hansen, Heine A, Jacobsen, Karsten W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 17
container_start_page 9885
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Mikkelsen, August E. G
Kristoffersen, Henrik H
Schiøtz, Jakob
Vegge, Tejs
Hansen, Heine A
Jacobsen, Karsten W
description The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls. Liquid water and OH species on Pt(111) surfaces are studied with molecular dynamics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling and gain insight into their structure and energetics.
doi_str_mv 10.1039/d2cp00190j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35416202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649995921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-90644ed5491c9e4c9695712388242cfa07ffe6b0020c15fb7ed3ac5288f5d2103</originalsourceid><addsrcrecordid>eNpd0UtLw0AQB_BFFFsfF-9KwEsVovtMskeJbwoW1HPY7s5qSpq0uwmab-9qawVPszA_hpn_InRE8AXBTF4aqhcYE4lnW2hIeMJiiTO-vXmnyQDteT_DAQnCdtGACU4SiukQ5c-t63TbOYhUbSKowb1BW2ofNTaqymVXmuhDteDi99645rOvokr14EK_jibtiBBydoB2rKo8HK7rPnq9vXnJ7-Px091DfjWONUuzNiyScA5GcEm0BK5lIkVKKMsyyqm2CqfWQjLFmGJNhJ2mYJjSgmaZFYaGS_fRaDV34ZplB74t5qXXUFWqhqbzBU24lFJISgI9_UdnTefqsF1QQnJJJRVBna-Udo33DmyxcOVcub4guPiOtrim-eQn2seAT9Yju-kczIb-ZhnA8Qo4rzfdv79hX4cgeug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659492925</pqid></control><display><type>article</type><title>Structure and energetics of liquid water-hydroxyl layers on Pt(111)</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mikkelsen, August E. G ; Kristoffersen, Henrik H ; Schiøtz, Jakob ; Vegge, Tejs ; Hansen, Heine A ; Jacobsen, Karsten W</creator><creatorcontrib>Mikkelsen, August E. G ; Kristoffersen, Henrik H ; Schiøtz, Jakob ; Vegge, Tejs ; Hansen, Heine A ; Jacobsen, Karsten W</creatorcontrib><description>The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls. Liquid water and OH species on Pt(111) surfaces are studied with molecular dynamics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling and gain insight into their structure and energetics.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp00190j</identifier><identifier>PMID: 35416202</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorption ; Dynamic structural analysis ; Fuel cells ; Hydrogen bonding ; Hydrogen bonds ; Molecular dynamics ; Molecular structure ; Neural networks ; Water ; Water chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9885-989</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-90644ed5491c9e4c9695712388242cfa07ffe6b0020c15fb7ed3ac5288f5d2103</citedby><cites>FETCH-LOGICAL-c378t-90644ed5491c9e4c9695712388242cfa07ffe6b0020c15fb7ed3ac5288f5d2103</cites><orcidid>0000-0002-1484-0284 ; 0000-0002-8712-5206 ; 0000-0002-1121-2979 ; 0000-0001-6943-0752 ; 0000-0001-7551-9470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35416202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikkelsen, August E. G</creatorcontrib><creatorcontrib>Kristoffersen, Henrik H</creatorcontrib><creatorcontrib>Schiøtz, Jakob</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Jacobsen, Karsten W</creatorcontrib><title>Structure and energetics of liquid water-hydroxyl layers on Pt(111)</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls. Liquid water and OH species on Pt(111) surfaces are studied with molecular dynamics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling and gain insight into their structure and energetics.</description><subject>Adsorption</subject><subject>Dynamic structural analysis</subject><subject>Fuel cells</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Water</subject><subject>Water chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLw0AQB_BFFFsfF-9KwEsVovtMskeJbwoW1HPY7s5qSpq0uwmab-9qawVPszA_hpn_InRE8AXBTF4aqhcYE4lnW2hIeMJiiTO-vXmnyQDteT_DAQnCdtGACU4SiukQ5c-t63TbOYhUbSKowb1BW2ofNTaqymVXmuhDteDi99645rOvokr14EK_jibtiBBydoB2rKo8HK7rPnq9vXnJ7-Px091DfjWONUuzNiyScA5GcEm0BK5lIkVKKMsyyqm2CqfWQjLFmGJNhJ2mYJjSgmaZFYaGS_fRaDV34ZplB74t5qXXUFWqhqbzBU24lFJISgI9_UdnTefqsF1QQnJJJRVBna-Udo33DmyxcOVcub4guPiOtrim-eQn2seAT9Yju-kczIb-ZhnA8Qo4rzfdv79hX4cgeug</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Mikkelsen, August E. G</creator><creator>Kristoffersen, Henrik H</creator><creator>Schiøtz, Jakob</creator><creator>Vegge, Tejs</creator><creator>Hansen, Heine A</creator><creator>Jacobsen, Karsten W</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-8712-5206</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0001-6943-0752</orcidid><orcidid>https://orcid.org/0000-0001-7551-9470</orcidid></search><sort><creationdate>20220504</creationdate><title>Structure and energetics of liquid water-hydroxyl layers on Pt(111)</title><author>Mikkelsen, August E. G ; Kristoffersen, Henrik H ; Schiøtz, Jakob ; Vegge, Tejs ; Hansen, Heine A ; Jacobsen, Karsten W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-90644ed5491c9e4c9695712388242cfa07ffe6b0020c15fb7ed3ac5288f5d2103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Dynamic structural analysis</topic><topic>Fuel cells</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikkelsen, August E. G</creatorcontrib><creatorcontrib>Kristoffersen, Henrik H</creatorcontrib><creatorcontrib>Schiøtz, Jakob</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Hansen, Heine A</creatorcontrib><creatorcontrib>Jacobsen, Karsten W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikkelsen, August E. G</au><au>Kristoffersen, Henrik H</au><au>Schiøtz, Jakob</au><au>Vegge, Tejs</au><au>Hansen, Heine A</au><au>Jacobsen, Karsten W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and energetics of liquid water-hydroxyl layers on Pt(111)</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>24</volume><issue>17</issue><spage>9885</spage><epage>989</epage><pages>9885-989</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls. Liquid water and OH species on Pt(111) surfaces are studied with molecular dynamics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling and gain insight into their structure and energetics.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35416202</pmid><doi>10.1039/d2cp00190j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1484-0284</orcidid><orcidid>https://orcid.org/0000-0002-8712-5206</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0001-6943-0752</orcidid><orcidid>https://orcid.org/0000-0001-7551-9470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9885-989
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_35416202
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Dynamic structural analysis
Fuel cells
Hydrogen bonding
Hydrogen bonds
Molecular dynamics
Molecular structure
Neural networks
Water
Water chemistry
title Structure and energetics of liquid water-hydroxyl layers on Pt(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20energetics%20of%20liquid%20water-hydroxyl%20layers%20on%20Pt(111)&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Mikkelsen,%20August%20E.%20G&rft.date=2022-05-04&rft.volume=24&rft.issue=17&rft.spage=9885&rft.epage=989&rft.pages=9885-989&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp00190j&rft_dat=%3Cproquest_pubme%3E2649995921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659492925&rft_id=info:pmid/35416202&rfr_iscdi=true