Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes

Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolyte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-03, Vol.12 (7)
Hauptverfasser: Jeong, Hyeonwoo, Na, Dan, Baek, Jiyeon, Kim, Sanggil, Mamidi, Suresh, Lee, Cheul-Ro, Seo, Hyung-Kee, Seo, Inseok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Jeong, Hyeonwoo
Na, Dan
Baek, Jiyeon
Kim, Sanggil
Mamidi, Suresh
Lee, Cheul-Ro
Seo, Hyung-Kee
Seo, Inseok
description Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li Al Si Ti P O (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 °C, 700 °C, 750 °C, and 800 °C to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 °C, 1000 °C, 1050 °C, and 1100 °C to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 °C resulted in a high relative density and the highest ionic conductivity (9.455 × 10 S cm ). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.
doi_str_mv 10.3390/nano12071158
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35407276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35407276</sourcerecordid><originalsourceid>FETCH-pubmed_primary_354072763</originalsourceid><addsrcrecordid>eNqFjrFrwkAcRo9SqaJuneXbJXqXM8YbRSwOQgtxcpGYnPQn513IJZL773VooVvf8r3hGx5j74LPpFR8bnPrRMxTIZLVCxs8TUULpcTrH--zsfdX_kQJuUrkG-vLZMHTOF0O2DELtvnWnjzcBVlb6ZqcpQIbZ8u2aOiusSeIaTcNWBt0yAgBB0IcdfiCjAI-IWJkzlCJrdFFUzsTGu1HrHfJjdfjnx2yycf2sNlFVXu-6fJU1XTL63D6jZH_Hh5-F0Pm</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Jeong, Hyeonwoo ; Na, Dan ; Baek, Jiyeon ; Kim, Sanggil ; Mamidi, Suresh ; Lee, Cheul-Ro ; Seo, Hyung-Kee ; Seo, Inseok</creator><creatorcontrib>Jeong, Hyeonwoo ; Na, Dan ; Baek, Jiyeon ; Kim, Sanggil ; Mamidi, Suresh ; Lee, Cheul-Ro ; Seo, Hyung-Kee ; Seo, Inseok</creatorcontrib><description>Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li Al Si Ti P O (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 °C, 700 °C, 750 °C, and 800 °C to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 °C, 1000 °C, 1050 °C, and 1100 °C to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 °C resulted in a high relative density and the highest ionic conductivity (9.455 × 10 S cm ). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12071158</identifier><identifier>PMID: 35407276</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Nanomaterials (Basel, Switzerland), 2022-03, Vol.12 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7159-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35407276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Hyeonwoo</creatorcontrib><creatorcontrib>Na, Dan</creatorcontrib><creatorcontrib>Baek, Jiyeon</creatorcontrib><creatorcontrib>Kim, Sanggil</creatorcontrib><creatorcontrib>Mamidi, Suresh</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Seo, Hyung-Kee</creatorcontrib><creatorcontrib>Seo, Inseok</creatorcontrib><title>Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li Al Si Ti P O (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 °C, 700 °C, 750 °C, and 800 °C to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 °C, 1000 °C, 1050 °C, and 1100 °C to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 °C resulted in a high relative density and the highest ionic conductivity (9.455 × 10 S cm ). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.</description><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjrFrwkAcRo9SqaJuneXbJXqXM8YbRSwOQgtxcpGYnPQn513IJZL773VooVvf8r3hGx5j74LPpFR8bnPrRMxTIZLVCxs8TUULpcTrH--zsfdX_kQJuUrkG-vLZMHTOF0O2DELtvnWnjzcBVlb6ZqcpQIbZ8u2aOiusSeIaTcNWBt0yAgBB0IcdfiCjAI-IWJkzlCJrdFFUzsTGu1HrHfJjdfjnx2yycf2sNlFVXu-6fJU1XTL63D6jZH_Hh5-F0Pm</recordid><startdate>20220331</startdate><enddate>20220331</enddate><creator>Jeong, Hyeonwoo</creator><creator>Na, Dan</creator><creator>Baek, Jiyeon</creator><creator>Kim, Sanggil</creator><creator>Mamidi, Suresh</creator><creator>Lee, Cheul-Ro</creator><creator>Seo, Hyung-Kee</creator><creator>Seo, Inseok</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-7159-721X</orcidid></search><sort><creationdate>20220331</creationdate><title>Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes</title><author>Jeong, Hyeonwoo ; Na, Dan ; Baek, Jiyeon ; Kim, Sanggil ; Mamidi, Suresh ; Lee, Cheul-Ro ; Seo, Hyung-Kee ; Seo, Inseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_354072763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Hyeonwoo</creatorcontrib><creatorcontrib>Na, Dan</creatorcontrib><creatorcontrib>Baek, Jiyeon</creatorcontrib><creatorcontrib>Kim, Sanggil</creatorcontrib><creatorcontrib>Mamidi, Suresh</creatorcontrib><creatorcontrib>Lee, Cheul-Ro</creatorcontrib><creatorcontrib>Seo, Hyung-Kee</creatorcontrib><creatorcontrib>Seo, Inseok</creatorcontrib><collection>PubMed</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Hyeonwoo</au><au>Na, Dan</au><au>Baek, Jiyeon</au><au>Kim, Sanggil</au><au>Mamidi, Suresh</au><au>Lee, Cheul-Ro</au><au>Seo, Hyung-Kee</au><au>Seo, Inseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2022-03-31</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li Al Si Ti P O (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 °C, 700 °C, 750 °C, and 800 °C to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 °C, 1000 °C, 1050 °C, and 1100 °C to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 °C resulted in a high relative density and the highest ionic conductivity (9.455 × 10 S cm ). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.</abstract><cop>Switzerland</cop><pmid>35407276</pmid><doi>10.3390/nano12071158</doi><orcidid>https://orcid.org/0000-0001-7159-721X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-03, Vol.12 (7)
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmed_primary_35407276
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
title Synthesis of Superionic Conductive Li 1+x+y Al x Si y Ti 2-x P 3-y O 12 Solid Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Superionic%20Conductive%20Li%201+x+y%20Al%20x%20Si%20y%20Ti%202-x%20P%203-y%20O%2012%20Solid%20Electrolytes&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Jeong,%20Hyeonwoo&rft.date=2022-03-31&rft.volume=12&rft.issue=7&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12071158&rft_dat=%3Cpubmed%3E35407276%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35407276&rfr_iscdi=true