Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support
The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2023-08, Vol.29 (8), p.3602-3616 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3616 |
---|---|
container_issue | 8 |
container_start_page | 3602 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 29 |
creator | Muller-Sielaff, Juliane Beladi, Seyed Behnam Vrede, Stephanie W. Meuschke, Monique Lucas, Peter J. F. Pijnenborg, Johanna M. A. Oeltze-Jafra, Steffen |
description | The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field. |
doi_str_mv | 10.1109/TVCG.2022.3166071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35394912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9754243</ieee_id><sourcerecordid>2648895734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERUvhAyAkZIkLl2w9_hf72G6hVKrogbJXy-tMJJesHewE1G9PVrv0wGlGmt97mplHyDtgKwBmLx4265sVZ5yvBGjNWnhBzsBKaJhi-uXSs7ZtuOb6lLyu9ZExkNLYV-RUKGGlBX5GtptYZz_Qy1pjnXwKSGOi1_gbhzzuME3Up45u_BA7P8WcaO7plX_CGn2i33D6k8vPSvtc6HqIKYbF6hpDrHv0-zyOuUxvyEnvh4pvj_Wc_Pjy-WH9tbm7v7ldX941QUg5NWbLmOms5UJyq4EpI1DIHmyreNupIDvmQQpjmQrCBw3empZxo0JrdTBbcU4-HXzHkn_NWCe3izXgMPiEea6Oa2mMVa2QC_rxP_QxzyUt2zluBCgOEvhCwYEKJddasHdjiTtfnhwwtw_A7QNw-wDcMYBF8-HoPG932D0r_n18Ad4fgIiIz-PlSMmlEH8BTOSHyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521412</pqid></control><display><type>article</type><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><source>IEEE Electronic Library (IEL)</source><creator>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</creator><creatorcontrib>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</creatorcontrib><description>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3166071</identifier><identifier>PMID: 35394912</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayes Theorem ; Bayesian analysis ; Bayesian networks ; causal model development ; Clinical decision making ; clinical decision support ; Collaborative work ; Computational modeling ; Computer Graphics ; Data models ; Decision support systems ; Decision Support Systems, Clinical ; Humans ; Medical diagnostic imaging ; Medical research ; Probability distribution ; Scientists ; Subject specialists ; Tumors ; visual analysis ; Visualization ; Workflow</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-08, Vol.29 (8), p.3602-3616</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</cites><orcidid>0000-0001-9098-504X ; 0000-0002-8279-0901 ; 0000-0002-2956-1093 ; 0000-0002-6962-9080 ; 0000-0001-5454-2428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9754243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9754243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35394912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller-Sielaff, Juliane</creatorcontrib><creatorcontrib>Beladi, Seyed Behnam</creatorcontrib><creatorcontrib>Vrede, Stephanie W.</creatorcontrib><creatorcontrib>Meuschke, Monique</creatorcontrib><creatorcontrib>Lucas, Peter J. F.</creatorcontrib><creatorcontrib>Pijnenborg, Johanna M. A.</creatorcontrib><creatorcontrib>Oeltze-Jafra, Steffen</creatorcontrib><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</description><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>causal model development</subject><subject>Clinical decision making</subject><subject>clinical decision support</subject><subject>Collaborative work</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>Data models</subject><subject>Decision support systems</subject><subject>Decision Support Systems, Clinical</subject><subject>Humans</subject><subject>Medical diagnostic imaging</subject><subject>Medical research</subject><subject>Probability distribution</subject><subject>Scientists</subject><subject>Subject specialists</subject><subject>Tumors</subject><subject>visual analysis</subject><subject>Visualization</subject><subject>Workflow</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS1ERUvhAyAkZIkLl2w9_hf72G6hVKrogbJXy-tMJJesHewE1G9PVrv0wGlGmt97mplHyDtgKwBmLx4265sVZ5yvBGjNWnhBzsBKaJhi-uXSs7ZtuOb6lLyu9ZExkNLYV-RUKGGlBX5GtptYZz_Qy1pjnXwKSGOi1_gbhzzuME3Up45u_BA7P8WcaO7plX_CGn2i33D6k8vPSvtc6HqIKYbF6hpDrHv0-zyOuUxvyEnvh4pvj_Wc_Pjy-WH9tbm7v7ldX941QUg5NWbLmOms5UJyq4EpI1DIHmyreNupIDvmQQpjmQrCBw3empZxo0JrdTBbcU4-HXzHkn_NWCe3izXgMPiEea6Oa2mMVa2QC_rxP_QxzyUt2zluBCgOEvhCwYEKJddasHdjiTtfnhwwtw_A7QNw-wDcMYBF8-HoPG932D0r_n18Ad4fgIiIz-PlSMmlEH8BTOSHyA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Muller-Sielaff, Juliane</creator><creator>Beladi, Seyed Behnam</creator><creator>Vrede, Stephanie W.</creator><creator>Meuschke, Monique</creator><creator>Lucas, Peter J. F.</creator><creator>Pijnenborg, Johanna M. A.</creator><creator>Oeltze-Jafra, Steffen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9098-504X</orcidid><orcidid>https://orcid.org/0000-0002-8279-0901</orcidid><orcidid>https://orcid.org/0000-0002-2956-1093</orcidid><orcidid>https://orcid.org/0000-0002-6962-9080</orcidid><orcidid>https://orcid.org/0000-0001-5454-2428</orcidid></search><sort><creationdate>20230801</creationdate><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><author>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>causal model development</topic><topic>Clinical decision making</topic><topic>clinical decision support</topic><topic>Collaborative work</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>Data models</topic><topic>Decision support systems</topic><topic>Decision Support Systems, Clinical</topic><topic>Humans</topic><topic>Medical diagnostic imaging</topic><topic>Medical research</topic><topic>Probability distribution</topic><topic>Scientists</topic><topic>Subject specialists</topic><topic>Tumors</topic><topic>visual analysis</topic><topic>Visualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller-Sielaff, Juliane</creatorcontrib><creatorcontrib>Beladi, Seyed Behnam</creatorcontrib><creatorcontrib>Vrede, Stephanie W.</creatorcontrib><creatorcontrib>Meuschke, Monique</creatorcontrib><creatorcontrib>Lucas, Peter J. F.</creatorcontrib><creatorcontrib>Pijnenborg, Johanna M. A.</creatorcontrib><creatorcontrib>Oeltze-Jafra, Steffen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muller-Sielaff, Juliane</au><au>Beladi, Seyed Behnam</au><au>Vrede, Stephanie W.</au><au>Meuschke, Monique</au><au>Lucas, Peter J. F.</au><au>Pijnenborg, Johanna M. A.</au><au>Oeltze-Jafra, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>29</volume><issue>8</issue><spage>3602</spage><epage>3616</epage><pages>3602-3616</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35394912</pmid><doi>10.1109/TVCG.2022.3166071</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9098-504X</orcidid><orcidid>https://orcid.org/0000-0002-8279-0901</orcidid><orcidid>https://orcid.org/0000-0002-2956-1093</orcidid><orcidid>https://orcid.org/0000-0002-6962-9080</orcidid><orcidid>https://orcid.org/0000-0001-5454-2428</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2023-08, Vol.29 (8), p.3602-3616 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_35394912 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayes Theorem Bayesian analysis Bayesian networks causal model development Clinical decision making clinical decision support Collaborative work Computational modeling Computer Graphics Data models Decision support systems Decision Support Systems, Clinical Humans Medical diagnostic imaging Medical research Probability distribution Scientists Subject specialists Tumors visual analysis Visualization Workflow |
title | Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Assistance%20in%20Development%20and%20Validation%20of%20Bayesian%20Networks%20for%20Clinical%20Decision%20Support&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Muller-Sielaff,%20Juliane&rft.date=2023-08-01&rft.volume=29&rft.issue=8&rft.spage=3602&rft.epage=3616&rft.pages=3602-3616&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3166071&rft_dat=%3Cproquest_RIE%3E2648895734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831521412&rft_id=info:pmid/35394912&rft_ieee_id=9754243&rfr_iscdi=true |