Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support

The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2023-08, Vol.29 (8), p.3602-3616
Hauptverfasser: Muller-Sielaff, Juliane, Beladi, Seyed Behnam, Vrede, Stephanie W., Meuschke, Monique, Lucas, Peter J. F., Pijnenborg, Johanna M. A., Oeltze-Jafra, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3616
container_issue 8
container_start_page 3602
container_title IEEE transactions on visualization and computer graphics
container_volume 29
creator Muller-Sielaff, Juliane
Beladi, Seyed Behnam
Vrede, Stephanie W.
Meuschke, Monique
Lucas, Peter J. F.
Pijnenborg, Johanna M. A.
Oeltze-Jafra, Steffen
description The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.
doi_str_mv 10.1109/TVCG.2022.3166071
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35394912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9754243</ieee_id><sourcerecordid>2648895734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERUvhAyAkZIkLl2w9_hf72G6hVKrogbJXy-tMJJesHewE1G9PVrv0wGlGmt97mplHyDtgKwBmLx4265sVZ5yvBGjNWnhBzsBKaJhi-uXSs7ZtuOb6lLyu9ZExkNLYV-RUKGGlBX5GtptYZz_Qy1pjnXwKSGOi1_gbhzzuME3Up45u_BA7P8WcaO7plX_CGn2i33D6k8vPSvtc6HqIKYbF6hpDrHv0-zyOuUxvyEnvh4pvj_Wc_Pjy-WH9tbm7v7ldX941QUg5NWbLmOms5UJyq4EpI1DIHmyreNupIDvmQQpjmQrCBw3empZxo0JrdTBbcU4-HXzHkn_NWCe3izXgMPiEea6Oa2mMVa2QC_rxP_QxzyUt2zluBCgOEvhCwYEKJddasHdjiTtfnhwwtw_A7QNw-wDcMYBF8-HoPG932D0r_n18Ad4fgIiIz-PlSMmlEH8BTOSHyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521412</pqid></control><display><type>article</type><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><source>IEEE Electronic Library (IEL)</source><creator>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</creator><creatorcontrib>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</creatorcontrib><description>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2022.3166071</identifier><identifier>PMID: 35394912</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayes Theorem ; Bayesian analysis ; Bayesian networks ; causal model development ; Clinical decision making ; clinical decision support ; Collaborative work ; Computational modeling ; Computer Graphics ; Data models ; Decision support systems ; Decision Support Systems, Clinical ; Humans ; Medical diagnostic imaging ; Medical research ; Probability distribution ; Scientists ; Subject specialists ; Tumors ; visual analysis ; Visualization ; Workflow</subject><ispartof>IEEE transactions on visualization and computer graphics, 2023-08, Vol.29 (8), p.3602-3616</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</cites><orcidid>0000-0001-9098-504X ; 0000-0002-8279-0901 ; 0000-0002-2956-1093 ; 0000-0002-6962-9080 ; 0000-0001-5454-2428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9754243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9754243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35394912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller-Sielaff, Juliane</creatorcontrib><creatorcontrib>Beladi, Seyed Behnam</creatorcontrib><creatorcontrib>Vrede, Stephanie W.</creatorcontrib><creatorcontrib>Meuschke, Monique</creatorcontrib><creatorcontrib>Lucas, Peter J. F.</creatorcontrib><creatorcontrib>Pijnenborg, Johanna M. A.</creatorcontrib><creatorcontrib>Oeltze-Jafra, Steffen</creatorcontrib><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</description><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>causal model development</subject><subject>Clinical decision making</subject><subject>clinical decision support</subject><subject>Collaborative work</subject><subject>Computational modeling</subject><subject>Computer Graphics</subject><subject>Data models</subject><subject>Decision support systems</subject><subject>Decision Support Systems, Clinical</subject><subject>Humans</subject><subject>Medical diagnostic imaging</subject><subject>Medical research</subject><subject>Probability distribution</subject><subject>Scientists</subject><subject>Subject specialists</subject><subject>Tumors</subject><subject>visual analysis</subject><subject>Visualization</subject><subject>Workflow</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS1ERUvhAyAkZIkLl2w9_hf72G6hVKrogbJXy-tMJJesHewE1G9PVrv0wGlGmt97mplHyDtgKwBmLx4265sVZ5yvBGjNWnhBzsBKaJhi-uXSs7ZtuOb6lLyu9ZExkNLYV-RUKGGlBX5GtptYZz_Qy1pjnXwKSGOi1_gbhzzuME3Up45u_BA7P8WcaO7plX_CGn2i33D6k8vPSvtc6HqIKYbF6hpDrHv0-zyOuUxvyEnvh4pvj_Wc_Pjy-WH9tbm7v7ldX941QUg5NWbLmOms5UJyq4EpI1DIHmyreNupIDvmQQpjmQrCBw3empZxo0JrdTBbcU4-HXzHkn_NWCe3izXgMPiEea6Oa2mMVa2QC_rxP_QxzyUt2zluBCgOEvhCwYEKJddasHdjiTtfnhwwtw_A7QNw-wDcMYBF8-HoPG932D0r_n18Ad4fgIiIz-PlSMmlEH8BTOSHyA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Muller-Sielaff, Juliane</creator><creator>Beladi, Seyed Behnam</creator><creator>Vrede, Stephanie W.</creator><creator>Meuschke, Monique</creator><creator>Lucas, Peter J. F.</creator><creator>Pijnenborg, Johanna M. A.</creator><creator>Oeltze-Jafra, Steffen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9098-504X</orcidid><orcidid>https://orcid.org/0000-0002-8279-0901</orcidid><orcidid>https://orcid.org/0000-0002-2956-1093</orcidid><orcidid>https://orcid.org/0000-0002-6962-9080</orcidid><orcidid>https://orcid.org/0000-0001-5454-2428</orcidid></search><sort><creationdate>20230801</creationdate><title>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</title><author>Muller-Sielaff, Juliane ; Beladi, Seyed Behnam ; Vrede, Stephanie W. ; Meuschke, Monique ; Lucas, Peter J. F. ; Pijnenborg, Johanna M. A. ; Oeltze-Jafra, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8b008d9923429610583e34f197527d5c4d0a1438905c3ac61a9870285c796c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>causal model development</topic><topic>Clinical decision making</topic><topic>clinical decision support</topic><topic>Collaborative work</topic><topic>Computational modeling</topic><topic>Computer Graphics</topic><topic>Data models</topic><topic>Decision support systems</topic><topic>Decision Support Systems, Clinical</topic><topic>Humans</topic><topic>Medical diagnostic imaging</topic><topic>Medical research</topic><topic>Probability distribution</topic><topic>Scientists</topic><topic>Subject specialists</topic><topic>Tumors</topic><topic>visual analysis</topic><topic>Visualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller-Sielaff, Juliane</creatorcontrib><creatorcontrib>Beladi, Seyed Behnam</creatorcontrib><creatorcontrib>Vrede, Stephanie W.</creatorcontrib><creatorcontrib>Meuschke, Monique</creatorcontrib><creatorcontrib>Lucas, Peter J. F.</creatorcontrib><creatorcontrib>Pijnenborg, Johanna M. A.</creatorcontrib><creatorcontrib>Oeltze-Jafra, Steffen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muller-Sielaff, Juliane</au><au>Beladi, Seyed Behnam</au><au>Vrede, Stephanie W.</au><au>Meuschke, Monique</au><au>Lucas, Peter J. F.</au><au>Pijnenborg, Johanna M. A.</au><au>Oeltze-Jafra, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>29</volume><issue>8</issue><spage>3602</spage><epage>3616</epage><pages>3602-3616</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The development and validation of Clinical Decision Support Models (CDSM) based on Bayesian networks (BN) is commonly done in a collaborative work between medical researchers providing the domain expertise and computer scientists developing the decision support model. Although modern tools provide facilities for data-driven model generation, domain experts are required to validate the accuracy of the learned model and to provide expert knowledge for fine-tuning it while computer scientists are needed to integrate this knowledge in the learned model (hybrid modeling approach). This generally time-expensive procedure hampers CDSM generation and updating. To address this problem, we developed a novel interactive visual approach allowing medical researchers with less knowledge in CDSM to develop and validate BNs based on domain specific data mainly independently and thus, diminishing the need for an additional computer scientist. In this context, we abstracted and simplified the common workflow in BN development as well as adjusted the workflow to medical experts' needs. We demonstrate our visual approach with data of endometrial cancer patients and evaluated it with six medical researchers who are domain experts in the gynecological field.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35394912</pmid><doi>10.1109/TVCG.2022.3166071</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9098-504X</orcidid><orcidid>https://orcid.org/0000-0002-8279-0901</orcidid><orcidid>https://orcid.org/0000-0002-2956-1093</orcidid><orcidid>https://orcid.org/0000-0002-6962-9080</orcidid><orcidid>https://orcid.org/0000-0001-5454-2428</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2023-08, Vol.29 (8), p.3602-3616
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_35394912
source IEEE Electronic Library (IEL)
subjects Bayes methods
Bayes Theorem
Bayesian analysis
Bayesian networks
causal model development
Clinical decision making
clinical decision support
Collaborative work
Computational modeling
Computer Graphics
Data models
Decision support systems
Decision Support Systems, Clinical
Humans
Medical diagnostic imaging
Medical research
Probability distribution
Scientists
Subject specialists
Tumors
visual analysis
Visualization
Workflow
title Visual Assistance in Development and Validation of Bayesian Networks for Clinical Decision Support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Assistance%20in%20Development%20and%20Validation%20of%20Bayesian%20Networks%20for%20Clinical%20Decision%20Support&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Muller-Sielaff,%20Juliane&rft.date=2023-08-01&rft.volume=29&rft.issue=8&rft.spage=3602&rft.epage=3616&rft.pages=3602-3616&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2022.3166071&rft_dat=%3Cproquest_RIE%3E2648895734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831521412&rft_id=info:pmid/35394912&rft_ieee_id=9754243&rfr_iscdi=true