Reverse Graph Learning for Graph Neural Network

Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-04, Vol.35 (4), p.4530-4541
Hauptverfasser: Peng, Liang, Hu, Rongyao, Kong, Fei, Gan, Jiangzhang, Mo, Yujie, Shi, Xiaoshuang, Zhu, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4541
container_issue 4
container_start_page 4530
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Peng, Liang
Hu, Rongyao
Kong, Fei
Gan, Jiangzhang
Mo, Yujie
Shi, Xiaoshuang
Zhu, Xiaofeng
description Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.
doi_str_mv 10.1109/TNNLS.2022.3161030
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_35380973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9749776</ieee_id><sourcerecordid>2647655771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a75d5194f16a0a48c87d1258faac701f61757e12e755f47dd194462a9b03523f3</originalsourceid><addsrcrecordid>eNpdkFFLwzAQgIMobsz9AQUZ-OJLZy5pkuZRhk6hTNAJvoWsvWpn185kVfz3Zq7uwXu54-674_gIOQU6BqD6aj6bpU9jRhkbc5BAOT0gfQaSRYwnyeG-Vi89MvR-SUNIKmSsj0mPC55QrXifXD3iJzqPo6mz67dRitbVZf06KhrXtWbYOluFtPlq3PsJOSps5XHY5QF5vr2ZT-6i9GF6P7lOo4wL2ERWiVyAjguQlto4yRKVAxNJYW2mKBQSlFAIDJUQRazyPLCxZFYvKBeMF3xALnd31675aNFvzKr0GVaVrbFpvWEyVlIIpSCgF__QZdO6OnxnOOVcMgCuA8V2VOYa7x0WZu3KlXXfBqjZGjW_Rs3WqOmMhqXz7nS7WGG-X_nzF4CzHVAi4n6sVayVkvwHUCh2pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033621139</pqid></control><display><type>article</type><title>Reverse Graph Learning for Graph Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Liang ; Hu, Rongyao ; Kong, Fei ; Gan, Jiangzhang ; Mo, Yujie ; Shi, Xiaoshuang ; Zhu, Xiaofeng</creator><creatorcontrib>Peng, Liang ; Hu, Rongyao ; Kong, Fei ; Gan, Jiangzhang ; Mo, Yujie ; Shi, Xiaoshuang ; Zhu, Xiaofeng</creatorcontrib><description>Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3161030</identifier><identifier>PMID: 35380973</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Classification ; Data models ; Data points ; Graph learning ; graph neural network ; Graph neural networks ; Graph theory ; Image edge detection ; Image retrieval ; Learning ; Machine learning ; Neural networks ; out-of-sample extension ; Prediction models ; Predictive models ; Representation learning ; Retrieval ; robust learning ; Semi-supervised learning ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.4530-4541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a75d5194f16a0a48c87d1258faac701f61757e12e755f47dd194462a9b03523f3</citedby><cites>FETCH-LOGICAL-c351t-a75d5194f16a0a48c87d1258faac701f61757e12e755f47dd194462a9b03523f3</cites><orcidid>0000-0002-9831-2787 ; 0000-0001-6840-0578 ; 0000-0003-1888-2091 ; 0000-0003-4934-0850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9749776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9749776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Hu, Rongyao</creatorcontrib><creatorcontrib>Kong, Fei</creatorcontrib><creatorcontrib>Gan, Jiangzhang</creatorcontrib><creatorcontrib>Mo, Yujie</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><title>Reverse Graph Learning for Graph Neural Network</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.</description><subject>Classification</subject><subject>Data models</subject><subject>Data points</subject><subject>Graph learning</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Image edge detection</subject><subject>Image retrieval</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>out-of-sample extension</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Representation learning</subject><subject>Retrieval</subject><subject>robust learning</subject><subject>Semi-supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFLwzAQgIMobsz9AQUZ-OJLZy5pkuZRhk6hTNAJvoWsvWpn185kVfz3Zq7uwXu54-674_gIOQU6BqD6aj6bpU9jRhkbc5BAOT0gfQaSRYwnyeG-Vi89MvR-SUNIKmSsj0mPC55QrXifXD3iJzqPo6mz67dRitbVZf06KhrXtWbYOluFtPlq3PsJOSps5XHY5QF5vr2ZT-6i9GF6P7lOo4wL2ERWiVyAjguQlto4yRKVAxNJYW2mKBQSlFAIDJUQRazyPLCxZFYvKBeMF3xALnd31675aNFvzKr0GVaVrbFpvWEyVlIIpSCgF__QZdO6OnxnOOVcMgCuA8V2VOYa7x0WZu3KlXXfBqjZGjW_Rs3WqOmMhqXz7nS7WGG-X_nzF4CzHVAi4n6sVayVkvwHUCh2pA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Peng, Liang</creator><creator>Hu, Rongyao</creator><creator>Kong, Fei</creator><creator>Gan, Jiangzhang</creator><creator>Mo, Yujie</creator><creator>Shi, Xiaoshuang</creator><creator>Zhu, Xiaofeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9831-2787</orcidid><orcidid>https://orcid.org/0000-0001-6840-0578</orcidid><orcidid>https://orcid.org/0000-0003-1888-2091</orcidid><orcidid>https://orcid.org/0000-0003-4934-0850</orcidid></search><sort><creationdate>20240401</creationdate><title>Reverse Graph Learning for Graph Neural Network</title><author>Peng, Liang ; Hu, Rongyao ; Kong, Fei ; Gan, Jiangzhang ; Mo, Yujie ; Shi, Xiaoshuang ; Zhu, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a75d5194f16a0a48c87d1258faac701f61757e12e755f47dd194462a9b03523f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Data models</topic><topic>Data points</topic><topic>Graph learning</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Image edge detection</topic><topic>Image retrieval</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>out-of-sample extension</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Representation learning</topic><topic>Retrieval</topic><topic>robust learning</topic><topic>Semi-supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Hu, Rongyao</creatorcontrib><creatorcontrib>Kong, Fei</creatorcontrib><creatorcontrib>Gan, Jiangzhang</creatorcontrib><creatorcontrib>Mo, Yujie</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Liang</au><au>Hu, Rongyao</au><au>Kong, Fei</au><au>Gan, Jiangzhang</au><au>Mo, Yujie</au><au>Shi, Xiaoshuang</au><au>Zhu, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse Graph Learning for Graph Neural Network</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>4530</spage><epage>4541</epage><pages>4530-4541</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35380973</pmid><doi>10.1109/TNNLS.2022.3161030</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9831-2787</orcidid><orcidid>https://orcid.org/0000-0001-6840-0578</orcidid><orcidid>https://orcid.org/0000-0003-1888-2091</orcidid><orcidid>https://orcid.org/0000-0003-4934-0850</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-04, Vol.35 (4), p.4530-4541
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_35380973
source IEEE Electronic Library (IEL)
subjects Classification
Data models
Data points
Graph learning
graph neural network
Graph neural networks
Graph theory
Image edge detection
Image retrieval
Learning
Machine learning
Neural networks
out-of-sample extension
Prediction models
Predictive models
Representation learning
Retrieval
robust learning
Semi-supervised learning
Task analysis
Training
title Reverse Graph Learning for Graph Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20Graph%20Learning%20for%20Graph%20Neural%20Network&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Peng,%20Liang&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=4530&rft.epage=4541&rft.pages=4530-4541&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3161030&rft_dat=%3Cproquest_RIE%3E2647655771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033621139&rft_id=info:pmid/35380973&rft_ieee_id=9749776&rfr_iscdi=true