Experimental and computational evaluation of capacitive hyperthermia
Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the establi...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2022-12, Vol.39 (1), p.504-516 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 1 |
container_start_page | 504 |
container_title | International journal of hyperthermia |
container_volume | 39 |
creator | Beck, Marcus Wust, Peter Oberacker, Eva Rattunde, Alexander Päßler, Tom Chrzon, Benjamin Veltsista, Paraskevi Danai Nadobny, Jacek Pellicer, Ruben Herz, Enrico Winter, Lukas Budach, Volker Zschaeck, Sebastian Ghadjar, Pirus |
description | Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies.
According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life.
For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations.
Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies. |
doi_str_mv | 10.1080/02656736.2022.2048093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35296213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62897ac62ee145e1bb7fac1272a68db1</doaj_id><sourcerecordid>2640328921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERS-FRwBlySbFdvyT7EBtgUqVuoG1NbYn1FUSB8cp3Lev03vbJRvbM_rmnJEPIR8YPWe0pZ8pV1LpRp1zynk5REu75hXZMaFELZnUr8luY-oNOiVvl-WeUiok12_IaSN5pzhrduTy6t-MKYw4ZRgqmHzl4jivGXKIU-ngAwzrU1HFvnIwgws5PGB1ty9z-Q7TGOAdOelhWPD98T4jv75d_bz4Ud_cfr---HpTO6G7XFsvGVIuhRe06X3jvbeyvBTapqO2b_pWaaFFCxasLbtLZqUQUisrEQt0Rq4Puj7CvZnL2pD2JkIwT42YfhtIObgBjeJtp8EpjsiERGat7sExrjmo1ltWtD4dtOYU_6y4ZDOGxeEwwIRxXQxXZckiwjdUHlCX4rIk7F-sGTVbGOY5DLOFYY5hlLmPR4vVjuhfpp5_vwBfDkCY-phG-BvT4E2G_RBTn2ByYTHN_z0eAR2NmVE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640328921</pqid></control><display><type>article</type><title>Experimental and computational evaluation of capacitive hyperthermia</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><creator>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</creator><creatorcontrib>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</creatorcontrib><description>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies.
According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life.
For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations.
Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2022.2048093</identifier><identifier>PMID: 35296213</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Capacitive hyperthermia ; clinical evaluation ; phantom measurements ; simulation ; treatment planning</subject><ispartof>International journal of hyperthermia, 2022-12, Vol.39 (1), p.504-516</ispartof><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</citedby><cites>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</cites><orcidid>0000-0002-4381-275X ; 0000-0003-3109-0662 ; 0000-0002-2747-165X ; 0000-0001-9263-4921 ; 0000-0002-0520-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2022.2048093$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2022.2048093$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beck, Marcus</creatorcontrib><creatorcontrib>Wust, Peter</creatorcontrib><creatorcontrib>Oberacker, Eva</creatorcontrib><creatorcontrib>Rattunde, Alexander</creatorcontrib><creatorcontrib>Päßler, Tom</creatorcontrib><creatorcontrib>Chrzon, Benjamin</creatorcontrib><creatorcontrib>Veltsista, Paraskevi Danai</creatorcontrib><creatorcontrib>Nadobny, Jacek</creatorcontrib><creatorcontrib>Pellicer, Ruben</creatorcontrib><creatorcontrib>Herz, Enrico</creatorcontrib><creatorcontrib>Winter, Lukas</creatorcontrib><creatorcontrib>Budach, Volker</creatorcontrib><creatorcontrib>Zschaeck, Sebastian</creatorcontrib><creatorcontrib>Ghadjar, Pirus</creatorcontrib><title>Experimental and computational evaluation of capacitive hyperthermia</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies.
According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life.
For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations.
Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</description><subject>Capacitive hyperthermia</subject><subject>clinical evaluation</subject><subject>phantom measurements</subject><subject>simulation</subject><subject>treatment planning</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhS1ERS-FRwBlySbFdvyT7EBtgUqVuoG1NbYn1FUSB8cp3Lev03vbJRvbM_rmnJEPIR8YPWe0pZ8pV1LpRp1zynk5REu75hXZMaFELZnUr8luY-oNOiVvl-WeUiok12_IaSN5pzhrduTy6t-MKYw4ZRgqmHzl4jivGXKIU-ngAwzrU1HFvnIwgws5PGB1ty9z-Q7TGOAdOelhWPD98T4jv75d_bz4Ud_cfr---HpTO6G7XFsvGVIuhRe06X3jvbeyvBTapqO2b_pWaaFFCxasLbtLZqUQUisrEQt0Rq4Puj7CvZnL2pD2JkIwT42YfhtIObgBjeJtp8EpjsiERGat7sExrjmo1ltWtD4dtOYU_6y4ZDOGxeEwwIRxXQxXZckiwjdUHlCX4rIk7F-sGTVbGOY5DLOFYY5hlLmPR4vVjuhfpp5_vwBfDkCY-phG-BvT4E2G_RBTn2ByYTHN_z0eAR2NmVE</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Beck, Marcus</creator><creator>Wust, Peter</creator><creator>Oberacker, Eva</creator><creator>Rattunde, Alexander</creator><creator>Päßler, Tom</creator><creator>Chrzon, Benjamin</creator><creator>Veltsista, Paraskevi Danai</creator><creator>Nadobny, Jacek</creator><creator>Pellicer, Ruben</creator><creator>Herz, Enrico</creator><creator>Winter, Lukas</creator><creator>Budach, Volker</creator><creator>Zschaeck, Sebastian</creator><creator>Ghadjar, Pirus</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4381-275X</orcidid><orcidid>https://orcid.org/0000-0003-3109-0662</orcidid><orcidid>https://orcid.org/0000-0002-2747-165X</orcidid><orcidid>https://orcid.org/0000-0001-9263-4921</orcidid><orcidid>https://orcid.org/0000-0002-0520-7719</orcidid></search><sort><creationdate>20221231</creationdate><title>Experimental and computational evaluation of capacitive hyperthermia</title><author>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitive hyperthermia</topic><topic>clinical evaluation</topic><topic>phantom measurements</topic><topic>simulation</topic><topic>treatment planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beck, Marcus</creatorcontrib><creatorcontrib>Wust, Peter</creatorcontrib><creatorcontrib>Oberacker, Eva</creatorcontrib><creatorcontrib>Rattunde, Alexander</creatorcontrib><creatorcontrib>Päßler, Tom</creatorcontrib><creatorcontrib>Chrzon, Benjamin</creatorcontrib><creatorcontrib>Veltsista, Paraskevi Danai</creatorcontrib><creatorcontrib>Nadobny, Jacek</creatorcontrib><creatorcontrib>Pellicer, Ruben</creatorcontrib><creatorcontrib>Herz, Enrico</creatorcontrib><creatorcontrib>Winter, Lukas</creatorcontrib><creatorcontrib>Budach, Volker</creatorcontrib><creatorcontrib>Zschaeck, Sebastian</creatorcontrib><creatorcontrib>Ghadjar, Pirus</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beck, Marcus</au><au>Wust, Peter</au><au>Oberacker, Eva</au><au>Rattunde, Alexander</au><au>Päßler, Tom</au><au>Chrzon, Benjamin</au><au>Veltsista, Paraskevi Danai</au><au>Nadobny, Jacek</au><au>Pellicer, Ruben</au><au>Herz, Enrico</au><au>Winter, Lukas</au><au>Budach, Volker</au><au>Zschaeck, Sebastian</au><au>Ghadjar, Pirus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational evaluation of capacitive hyperthermia</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2022-12-31</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>504</spage><epage>516</epage><pages>504-516</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies.
According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life.
For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations.
Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>35296213</pmid><doi>10.1080/02656736.2022.2048093</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4381-275X</orcidid><orcidid>https://orcid.org/0000-0003-3109-0662</orcidid><orcidid>https://orcid.org/0000-0002-2747-165X</orcidid><orcidid>https://orcid.org/0000-0001-9263-4921</orcidid><orcidid>https://orcid.org/0000-0002-0520-7719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-6736 |
ispartof | International journal of hyperthermia, 2022-12, Vol.39 (1), p.504-516 |
issn | 0265-6736 1464-5157 |
language | eng |
recordid | cdi_pubmed_primary_35296213 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals |
subjects | Capacitive hyperthermia clinical evaluation phantom measurements simulation treatment planning |
title | Experimental and computational evaluation of capacitive hyperthermia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20evaluation%20of%20capacitive%20hyperthermia&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Beck,%20Marcus&rft.date=2022-12-31&rft.volume=39&rft.issue=1&rft.spage=504&rft.epage=516&rft.pages=504-516&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2022.2048093&rft_dat=%3Cproquest_pubme%3E2640328921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640328921&rft_id=info:pmid/35296213&rft_doaj_id=oai_doaj_org_article_62897ac62ee145e1bb7fac1272a68db1&rfr_iscdi=true |