Experimental and computational evaluation of capacitive hyperthermia

Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hyperthermia 2022-12, Vol.39 (1), p.504-516
Hauptverfasser: Beck, Marcus, Wust, Peter, Oberacker, Eva, Rattunde, Alexander, Päßler, Tom, Chrzon, Benjamin, Veltsista, Paraskevi Danai, Nadobny, Jacek, Pellicer, Ruben, Herz, Enrico, Winter, Lukas, Budach, Volker, Zschaeck, Sebastian, Ghadjar, Pirus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 1
container_start_page 504
container_title International journal of hyperthermia
container_volume 39
creator Beck, Marcus
Wust, Peter
Oberacker, Eva
Rattunde, Alexander
Päßler, Tom
Chrzon, Benjamin
Veltsista, Paraskevi Danai
Nadobny, Jacek
Pellicer, Ruben
Herz, Enrico
Winter, Lukas
Budach, Volker
Zschaeck, Sebastian
Ghadjar, Pirus
description Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies. According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life. For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations. Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.
doi_str_mv 10.1080/02656736.2022.2048093
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35296213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62897ac62ee145e1bb7fac1272a68db1</doaj_id><sourcerecordid>2640328921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERS-FRwBlySbFdvyT7EBtgUqVuoG1NbYn1FUSB8cp3Lev03vbJRvbM_rmnJEPIR8YPWe0pZ8pV1LpRp1zynk5REu75hXZMaFELZnUr8luY-oNOiVvl-WeUiok12_IaSN5pzhrduTy6t-MKYw4ZRgqmHzl4jivGXKIU-ngAwzrU1HFvnIwgws5PGB1ty9z-Q7TGOAdOelhWPD98T4jv75d_bz4Ud_cfr---HpTO6G7XFsvGVIuhRe06X3jvbeyvBTapqO2b_pWaaFFCxasLbtLZqUQUisrEQt0Rq4Puj7CvZnL2pD2JkIwT42YfhtIObgBjeJtp8EpjsiERGat7sExrjmo1ltWtD4dtOYU_6y4ZDOGxeEwwIRxXQxXZckiwjdUHlCX4rIk7F-sGTVbGOY5DLOFYY5hlLmPR4vVjuhfpp5_vwBfDkCY-phG-BvT4E2G_RBTn2ByYTHN_z0eAR2NmVE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640328921</pqid></control><display><type>article</type><title>Experimental and computational evaluation of capacitive hyperthermia</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><creator>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</creator><creatorcontrib>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</creatorcontrib><description>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies. According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life. For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations. Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2022.2048093</identifier><identifier>PMID: 35296213</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Capacitive hyperthermia ; clinical evaluation ; phantom measurements ; simulation ; treatment planning</subject><ispartof>International journal of hyperthermia, 2022-12, Vol.39 (1), p.504-516</ispartof><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</citedby><cites>FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</cites><orcidid>0000-0002-4381-275X ; 0000-0003-3109-0662 ; 0000-0002-2747-165X ; 0000-0001-9263-4921 ; 0000-0002-0520-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2022.2048093$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2022.2048093$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35296213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beck, Marcus</creatorcontrib><creatorcontrib>Wust, Peter</creatorcontrib><creatorcontrib>Oberacker, Eva</creatorcontrib><creatorcontrib>Rattunde, Alexander</creatorcontrib><creatorcontrib>Päßler, Tom</creatorcontrib><creatorcontrib>Chrzon, Benjamin</creatorcontrib><creatorcontrib>Veltsista, Paraskevi Danai</creatorcontrib><creatorcontrib>Nadobny, Jacek</creatorcontrib><creatorcontrib>Pellicer, Ruben</creatorcontrib><creatorcontrib>Herz, Enrico</creatorcontrib><creatorcontrib>Winter, Lukas</creatorcontrib><creatorcontrib>Budach, Volker</creatorcontrib><creatorcontrib>Zschaeck, Sebastian</creatorcontrib><creatorcontrib>Ghadjar, Pirus</creatorcontrib><title>Experimental and computational evaluation of capacitive hyperthermia</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies. According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life. For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations. Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</description><subject>Capacitive hyperthermia</subject><subject>clinical evaluation</subject><subject>phantom measurements</subject><subject>simulation</subject><subject>treatment planning</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhS1ERS-FRwBlySbFdvyT7EBtgUqVuoG1NbYn1FUSB8cp3Lev03vbJRvbM_rmnJEPIR8YPWe0pZ8pV1LpRp1zynk5REu75hXZMaFELZnUr8luY-oNOiVvl-WeUiok12_IaSN5pzhrduTy6t-MKYw4ZRgqmHzl4jivGXKIU-ngAwzrU1HFvnIwgws5PGB1ty9z-Q7TGOAdOelhWPD98T4jv75d_bz4Ud_cfr---HpTO6G7XFsvGVIuhRe06X3jvbeyvBTapqO2b_pWaaFFCxasLbtLZqUQUisrEQt0Rq4Puj7CvZnL2pD2JkIwT42YfhtIObgBjeJtp8EpjsiERGat7sExrjmo1ltWtD4dtOYU_6y4ZDOGxeEwwIRxXQxXZckiwjdUHlCX4rIk7F-sGTVbGOY5DLOFYY5hlLmPR4vVjuhfpp5_vwBfDkCY-phG-BvT4E2G_RBTn2ByYTHN_z0eAR2NmVE</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Beck, Marcus</creator><creator>Wust, Peter</creator><creator>Oberacker, Eva</creator><creator>Rattunde, Alexander</creator><creator>Päßler, Tom</creator><creator>Chrzon, Benjamin</creator><creator>Veltsista, Paraskevi Danai</creator><creator>Nadobny, Jacek</creator><creator>Pellicer, Ruben</creator><creator>Herz, Enrico</creator><creator>Winter, Lukas</creator><creator>Budach, Volker</creator><creator>Zschaeck, Sebastian</creator><creator>Ghadjar, Pirus</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4381-275X</orcidid><orcidid>https://orcid.org/0000-0003-3109-0662</orcidid><orcidid>https://orcid.org/0000-0002-2747-165X</orcidid><orcidid>https://orcid.org/0000-0001-9263-4921</orcidid><orcidid>https://orcid.org/0000-0002-0520-7719</orcidid></search><sort><creationdate>20221231</creationdate><title>Experimental and computational evaluation of capacitive hyperthermia</title><author>Beck, Marcus ; Wust, Peter ; Oberacker, Eva ; Rattunde, Alexander ; Päßler, Tom ; Chrzon, Benjamin ; Veltsista, Paraskevi Danai ; Nadobny, Jacek ; Pellicer, Ruben ; Herz, Enrico ; Winter, Lukas ; Budach, Volker ; Zschaeck, Sebastian ; Ghadjar, Pirus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bd51e0254d403fd3dddb503f6eb390bf3f8674748ababb26551b544576b5eeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitive hyperthermia</topic><topic>clinical evaluation</topic><topic>phantom measurements</topic><topic>simulation</topic><topic>treatment planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beck, Marcus</creatorcontrib><creatorcontrib>Wust, Peter</creatorcontrib><creatorcontrib>Oberacker, Eva</creatorcontrib><creatorcontrib>Rattunde, Alexander</creatorcontrib><creatorcontrib>Päßler, Tom</creatorcontrib><creatorcontrib>Chrzon, Benjamin</creatorcontrib><creatorcontrib>Veltsista, Paraskevi Danai</creatorcontrib><creatorcontrib>Nadobny, Jacek</creatorcontrib><creatorcontrib>Pellicer, Ruben</creatorcontrib><creatorcontrib>Herz, Enrico</creatorcontrib><creatorcontrib>Winter, Lukas</creatorcontrib><creatorcontrib>Budach, Volker</creatorcontrib><creatorcontrib>Zschaeck, Sebastian</creatorcontrib><creatorcontrib>Ghadjar, Pirus</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beck, Marcus</au><au>Wust, Peter</au><au>Oberacker, Eva</au><au>Rattunde, Alexander</au><au>Päßler, Tom</au><au>Chrzon, Benjamin</au><au>Veltsista, Paraskevi Danai</au><au>Nadobny, Jacek</au><au>Pellicer, Ruben</au><au>Herz, Enrico</au><au>Winter, Lukas</au><au>Budach, Volker</au><au>Zschaeck, Sebastian</au><au>Ghadjar, Pirus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational evaluation of capacitive hyperthermia</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2022-12-31</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>504</spage><epage>516</epage><pages>504-516</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>Hyperthermia as an enhancer of radio- and/or chemotherapy has been confirmed by various trials. Quite a few positive randomized trials have been carried out with capacitive hyperthermia systems (CHS), even though specific absorption rates (SAR) in deep regions are known to be inferior to the established annular-phased array techniques. Due to a lack of systematic SAR measurements for current capacitive technology, we performed phantom measurements in combination with simulation studies. According to the current guidelines, homogeneous and inhomogeneous agarose phantoms were manufactured for the commercial CHS Celsius42. Temperature/time curves were registered, and specific absorption rate (SAR) profiles and distributions were derived using the temperature gradient method. We implemented models for electrodes and phantom setups for simulation studies using Sim4Life. For a standard total power of 200 W, we measured effective SAR until depths of 6-8 cm in a homogeneous phantom, which indicates fair heating conditions for tumor diseases in superficial and intermediate depths. A fat layer of 1 cm strongly weakens the SAR, but 10-20 W/kg are still achieved in intermediate to deep regions (2-10 cm). In the phantom setup with integrated bone, we measured low SAR of 5-10 W/kg in the cancellous bone. Our simulations could fairly describe the measured SAR distributions, but predict tendentially higher SAR than measured. Additional simulations suggest that we would achieve higher SAR with vital fatty tissue and bone metastases in clinical situations. Capacitive systems are suitable to heat superficial and medium-deep tumors as well as some bone metastases, and CHS application is feasible for a specific class of patients with pelvic and abdominal tumors. These findings are consistent with positive clinical studies.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35296213</pmid><doi>10.1080/02656736.2022.2048093</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4381-275X</orcidid><orcidid>https://orcid.org/0000-0003-3109-0662</orcidid><orcidid>https://orcid.org/0000-0002-2747-165X</orcidid><orcidid>https://orcid.org/0000-0001-9263-4921</orcidid><orcidid>https://orcid.org/0000-0002-0520-7719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-6736
ispartof International journal of hyperthermia, 2022-12, Vol.39 (1), p.504-516
issn 0265-6736
1464-5157
language eng
recordid cdi_pubmed_primary_35296213
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals
subjects Capacitive hyperthermia
clinical evaluation
phantom measurements
simulation
treatment planning
title Experimental and computational evaluation of capacitive hyperthermia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20evaluation%20of%20capacitive%20hyperthermia&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Beck,%20Marcus&rft.date=2022-12-31&rft.volume=39&rft.issue=1&rft.spage=504&rft.epage=516&rft.pages=504-516&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2022.2048093&rft_dat=%3Cproquest_pubme%3E2640328921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640328921&rft_id=info:pmid/35296213&rft_doaj_id=oai_doaj_org_article_62897ac62ee145e1bb7fac1272a68db1&rfr_iscdi=true