Macromolecular Crowding Is More than Hard-Core Repulsions

Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biophysics 2022-05, Vol.51 (1), p.267-300
Hauptverfasser: Speer, Shannon L, Stewart, Claire J, Sapir, Liel, Harries, Daniel, Pielak, Gary J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 1
container_start_page 267
container_title Annual review of biophysics
container_volume 51
creator Speer, Shannon L
Stewart, Claire J
Sapir, Liel
Harries, Daniel
Pielak, Gary J
description Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.
doi_str_mv 10.1146/annurev-biophys-091321-071829
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35239418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636144375</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-2c7e9811a84db13877fc22d183501514b76638611493c497f9d0db615189500f3</originalsourceid><addsrcrecordid>eNqVkE9LxDAQxYMo7rr6FaQXwUs0k6RpcvCgRd2FXQRR8BbSNnUr_Weyddlvb5fWvXuaGebNe8wPoSsgNwBc3Jq67pz9wUnRtOudx0QBo4BJBJKqIzQFxQQGyuTxoacfE3Tm_RchoYi4OEUTFlKmOMgpUiuTuqZqSpt2pXFB7JptVtSfwcIHq8bZYLM2dTA3LsPxfny1bVf6oqn9OTrJTentxVhn6P3p8S2e4-XL8yK-X2ITknCDaRpZJQGM5FkCTEZRnlKagWQhgRB4EgnBpOh_UyzlKspVRrJE9CupQkJyNkPXg2_rmu_O-o2uCp_asjS1bTqvqWACOGdR2EvvBmn_kvfO5rp1RWXcTgPRe3p6pKdHenqgpwd6_f3lGNUllc0O13-4esHDINj7mLJ3KuzW_zPlF-JihVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636144375</pqid></control><display><type>article</type><title>Macromolecular Crowding Is More than Hard-Core Repulsions</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Speer, Shannon L ; Stewart, Claire J ; Sapir, Liel ; Harries, Daniel ; Pielak, Gary J</creator><creatorcontrib>Speer, Shannon L ; Stewart, Claire J ; Sapir, Liel ; Harries, Daniel ; Pielak, Gary J</creatorcontrib><description>Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.</description><identifier>ISSN: 1936-122X</identifier><identifier>EISSN: 1936-1238</identifier><identifier>DOI: 10.1146/annurev-biophys-091321-071829</identifier><identifier>PMID: 35239418</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>depletion forces ; excluded volume ; macromolecular crowding ; Macromolecular Substances - chemistry ; Polymers ; preferential interactions ; protein complex stability ; Protein Stability ; Proteins - chemistry ; Thermodynamics</subject><ispartof>Annual review of biophysics, 2022-05, Vol.51 (1), p.267-300</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-2c7e9811a84db13877fc22d183501514b76638611493c497f9d0db615189500f3</citedby><cites>FETCH-LOGICAL-a505t-2c7e9811a84db13877fc22d183501514b76638611493c497f9d0db615189500f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biophys-091321-071829?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biophys-091321-071829$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,776,780,4167,27903,27904,78001,78002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35239418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Speer, Shannon L</creatorcontrib><creatorcontrib>Stewart, Claire J</creatorcontrib><creatorcontrib>Sapir, Liel</creatorcontrib><creatorcontrib>Harries, Daniel</creatorcontrib><creatorcontrib>Pielak, Gary J</creatorcontrib><title>Macromolecular Crowding Is More than Hard-Core Repulsions</title><title>Annual review of biophysics</title><addtitle>Annu Rev Biophys</addtitle><description>Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.</description><subject>depletion forces</subject><subject>excluded volume</subject><subject>macromolecular crowding</subject><subject>Macromolecular Substances - chemistry</subject><subject>Polymers</subject><subject>preferential interactions</subject><subject>protein complex stability</subject><subject>Protein Stability</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><issn>1936-122X</issn><issn>1936-1238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkE9LxDAQxYMo7rr6FaQXwUs0k6RpcvCgRd2FXQRR8BbSNnUr_Weyddlvb5fWvXuaGebNe8wPoSsgNwBc3Jq67pz9wUnRtOudx0QBo4BJBJKqIzQFxQQGyuTxoacfE3Tm_RchoYi4OEUTFlKmOMgpUiuTuqZqSpt2pXFB7JptVtSfwcIHq8bZYLM2dTA3LsPxfny1bVf6oqn9OTrJTentxVhn6P3p8S2e4-XL8yK-X2ITknCDaRpZJQGM5FkCTEZRnlKagWQhgRB4EgnBpOh_UyzlKspVRrJE9CupQkJyNkPXg2_rmu_O-o2uCp_asjS1bTqvqWACOGdR2EvvBmn_kvfO5rp1RWXcTgPRe3p6pKdHenqgpwd6_f3lGNUllc0O13-4esHDINj7mLJ3KuzW_zPlF-JihVg</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Speer, Shannon L</creator><creator>Stewart, Claire J</creator><creator>Sapir, Liel</creator><creator>Harries, Daniel</creator><creator>Pielak, Gary J</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220509</creationdate><title>Macromolecular Crowding Is More than Hard-Core Repulsions</title><author>Speer, Shannon L ; Stewart, Claire J ; Sapir, Liel ; Harries, Daniel ; Pielak, Gary J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-2c7e9811a84db13877fc22d183501514b76638611493c497f9d0db615189500f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>depletion forces</topic><topic>excluded volume</topic><topic>macromolecular crowding</topic><topic>Macromolecular Substances - chemistry</topic><topic>Polymers</topic><topic>preferential interactions</topic><topic>protein complex stability</topic><topic>Protein Stability</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Shannon L</creatorcontrib><creatorcontrib>Stewart, Claire J</creatorcontrib><creatorcontrib>Sapir, Liel</creatorcontrib><creatorcontrib>Harries, Daniel</creatorcontrib><creatorcontrib>Pielak, Gary J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Shannon L</au><au>Stewart, Claire J</au><au>Sapir, Liel</au><au>Harries, Daniel</au><au>Pielak, Gary J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macromolecular Crowding Is More than Hard-Core Repulsions</atitle><jtitle>Annual review of biophysics</jtitle><addtitle>Annu Rev Biophys</addtitle><date>2022-05-09</date><risdate>2022</risdate><volume>51</volume><issue>1</issue><spage>267</spage><epage>300</epage><pages>267-300</pages><issn>1936-122X</issn><eissn>1936-1238</eissn><abstract>Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins.Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>35239418</pmid><doi>10.1146/annurev-biophys-091321-071829</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-122X
ispartof Annual review of biophysics, 2022-05, Vol.51 (1), p.267-300
issn 1936-122X
1936-1238
language eng
recordid cdi_pubmed_primary_35239418
source Annual Reviews Complete A-Z List; MEDLINE
subjects depletion forces
excluded volume
macromolecular crowding
Macromolecular Substances - chemistry
Polymers
preferential interactions
protein complex stability
Protein Stability
Proteins - chemistry
Thermodynamics
title Macromolecular Crowding Is More than Hard-Core Repulsions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macromolecular%20Crowding%20Is%20More%20than%20Hard-Core%20Repulsions&rft.jtitle=Annual%20review%20of%20biophysics&rft.au=Speer,%20Shannon%20L&rft.date=2022-05-09&rft.volume=51&rft.issue=1&rft.spage=267&rft.epage=300&rft.pages=267-300&rft.issn=1936-122X&rft.eissn=1936-1238&rft_id=info:doi/10.1146/annurev-biophys-091321-071829&rft_dat=%3Cproquest_pubme%3E2636144375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636144375&rft_id=info:pmid/35239418&rfr_iscdi=true